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Theory of solid state quantum information processing

Guido Burkard

IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598, USA

Recent theoretical work on solid-state proposals for the implementation of quantum computation
and quantum information processing is reviewed. The differences and similarities between micro-
scopic and macroscopic qubits are highlighted and exemplified by the spin qubit proposal on one
side and the superconducting qubits on the other. Before explaining the spin and supercondcut-
ing qubits in detail, some general concepts that are relevant for both types of solid-state qubits
are reviewed. The controlled production of entanglement in solid-state devices, the transport of
carriers of entanglement, and entanglement detection will be discussed in the final part of this
review.
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I. INTRODUCTION

The capabilities of information processing devices are derived from their physical properties; in Landauer’s words,
“Information is physical” (Landauer, 1991). The pioneers of quantum information processing recognized that if a
device was quantum mechanical, then it could have computational powers exceeding those of a classical machine. A
sign for the superiority of quantum hardware is that typical simulations of quantum systems on classical computers
appear to be computationally hard.

This article is intended to give an overview of the theory of solid-state quantum information processing. For a general
introduction to quantum computation (QC) and quantum information, we refer the reader to (Nielsen and Chuang,
2000). Although the distinction between different quantum devices is probably less fundamental than that between
quantum and classical devices, Landauer’s motto can also be applied here. In other words, the specific physical
properties of the quantum hardware do matter. Two rather different categories of this hardware are those involving
atomic systems, e.g.,

• atoms in an ion trap,

• atoms in an optical lattice,

• ensemble of nuclear spins in a liquid,

and those involving solid-state systems, e.g.,

• spins of electrons in semiconductor quantum dots,

• nuclear spins of donor atoms in a semiconductor,
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• superconducting microcircuits containing Josephson junctions.

This list is by no means complete; an informative collection of various proposals can be found in (Braunstein and Lo,
2000). While there have so far been more successful demonstrations involving atomic systems in the laboratory, many
solid-state systems are scalable, i.e., one can fabricate systems with many quantum bits (qubits) using essentially the
same fabrication technique that is proposed or used for a single qubit.

A. What actually has to be achieved? DiVincenzo’s criteria

For the following discussion of attempts to implement a quantum computer (or parts of it) in solid-state systems,
it may be useful to review what actually has to be achieved. An excellent summary of the criteria for the physical
implementation of quantum computation are DiVincenzo’s following “five requirements” (DiVincenzo, 1997, 2000).

1. A scalable physical system with well characterized qubits

A quantum bit, or qubit, is a suitable quantum-mechanical two-state system (see item I.A.3 for more about what
it means for the qubit to be quantum mechanical). A pure state of the two-state system then takes the form

|ψ〉 = α|0〉 + β|1〉, (1)

where the amplitudes α and β are complex numbers such that |α|2 + |β|2 = 1. The states |0〉 and |1〉 form an
orthonormal basis of the Hilbert space H2 = span{|0〉, |1〉} of the qubit. A good example of a quantum two-state
system is the spin 1/2 of an electron, where | ↑〉 ≡ |0〉 and | ↓〉 ≡ |1〉. The Hilbert space of the entire system then
needs to be a tensor product of a large number n of such two-state systems,

H = H⊗n
2 = H2 ⊗H2 ⊗ · · · ⊗ H2

︸ ︷︷ ︸

n factors

. (2)

An excellent tutorial on the physical meaning of the tensor product in Eq. (2) and the difference between classical and
quantum bits can be found in (Mermin, 2003). A system is scalable if it can be realized (in principle) for arbitrary
n. Some early atomic qubit realizations are not (easily) scalable, and one of the biggest motivations for studying
solid-state qubits is the hope that they will be scalable like conventional solid-state integrated circuits. A collection
of identical particles, e.g., the Fermi sea of electrons in a metal, typically does not represent a set of well characterized

qubits. The qubits need to be “labeled” in order to make them distinguishable, e.g., in an arrangement where single
electrons sit on localized sites (quantum dots, donor levels of impurity atoms) and can be addressed, e.g., as “spin of
the i-th dot”.

2. The ability to initialize the state of the qubits

Before a quantum computation is started, a fresh register of qubits, e.g., in the state

|ψ〉 = |0〉⊗n = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉
︸ ︷︷ ︸

n factors

, (3)

is required. This requirement looks more innocent than it actually is, since it is not always easy to create such
low-entropy states, e.g., if the temperature is not sufficiently low. Suppling a quantum computer with fresh “zeros”
is also essential for quantum error correction, where the entropy that accumulates due to decoherence is pumped out
of the quantum memory (Nielsen and Chuang, 2000). For this purpose, it also matters how fast the fresh “zeros” can
be supplied.

3. Long relevant decoherence times, much longer than the gate operation times

A decoherence time characterizes how long it takes until the quantum phase coherence of a system (e.g., a qubit) is
lost due to its interaction with the environment. Frequently used figures of merit are the so-called energy-relaxation
time T1 and the decoherence time T2 of a single qubit (the notation originates from the NMR literature). To illustrate
the meaning of these two quantities, let us assume for the moment that T1 ≫ T2 (this need not be the case; T1 and T2
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can also be of the same order of magnitude). A pure state of a qubit, Eq. (1), has degraded to an incoherent mixture
after a time of the order of T2, described by the density matrix

ρ = |α|2|0〉〈0| + |β|2|1〉〈1|. (4)

An elementary introduction into the meaning of the density operator ρ can be found in quantum mechanics textbooks
or in (Nielsen and Chuang, 2000). Note that, in the case where |0〉 and |1〉 are eigenstates with different energies, the
processes involved in the decoherence of the qubit so far did not involve any energy exchange with the environment.
Nevertheless, this loss of the phase information is sufficient to disrupt a quantum computation. After a time of the order
of T1, energy relaxation has taken place and the system is in the thermal equilibrium state ρ = Z−1 exp(−H/kBT ),
with the partition sum Z = Tr exp(−H/kBT ), the qubit Hamiltonian H , the temperature T , and Boltzmann’s
constant kB . The requirement for quantum computation is that T2 ≫ Top where Top denotes the time to perform a
typical operation from the universal set (see Eq. (6) below). In order to achieve quantum computations of arbitrary
length with the help of quantum error correction, it is required that the error probability per gate ǫ ≈ Top/T2 is
below its threshold value ǫthres for fault-tolerant quantum computation (Nielsen and Chuang, 2000). The number
ǫthres depends on the error-correcting codes used and the type of errors they have to protect against.

4. A universal set of quantum gates

It is required that there is a set S of unitary operators, called gates or quantum gates, operating on a bounded
number of qubits at a time, from which all unitary operators U on any number of qubits can be composed by applying
them in series,

U = UkUk−1 · · ·U2U1, (5)

where Ui ∈ S. It has been shown that there are universal sets consisting of quantum gates that operate only on one
or two qubits (DiVincenzo, 1995), e.g., the union of one suitable two-qubit gate U(2) with the set of all operations on
a single qubit,

S = {U(2)} ∪ SU(2). (6)

Examples of suitable two-quits gates U(2) are the CNOT gate, also known as quantum-XOR or simply XOR
(Barenco et al., 1995a), with the following matrix representation in H2 ⊗H2,

UXOR =






1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




 , (7)

or the square-root of SWAP (Loss and DiVincenzo, 1998),

S =







1 0 0 0
0 1−i

2
1+i
2 0

0 1+i
2

1−i
2 0

0 0 0 1






. (8)

It should be added here that there are ways of achieving unitary gates by performing non-unitary operations on a
larger Hilbert space. There have been several proposals for doing universal quantum computation by performing von
Neumann measurements on a subset of the qubits of a large entangled state or cluster state (Leung, 2004; Nielsen,
2003; Raussendorf and Briegel, 2001). Another example where measurements are used to generate unitary gates is
that of free-electron quantum computation (Beenakker et al., 2004).

5. The ability to measure specific single qubits

At the end of a computation, the qubits (or, at least, a subset of them) need to be measured individually in some
fixed basis, e.g., the computational basis given by the states |0〉 and |1〉. The observable that is measured in this
procedure is the Pauli matrix

σz =

(
1 0
0 −1

)

. (9)
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B. Microscopic vs. macroscopic solid-state qubits

The existing and proposed solid-state qubits can roughly be grouped into two categories. The qubits of the first
category, which we will label microscopic, are similar to the atomic qubits in the sense that they are based on
quantum objects on the atomic scale whose states |0〉 and |1〉 are distinguishable only by measuring a microscopic
observable, such as an angular momentum on the order of Planck’s constant ~ or a magnetic dipole moment of the
order of one Bohr magneton, µB. Electron and nuclear spin qubits, as well as the orbital state of an electron in a
semiconductor quantum dot, fall under this category. The second category of qubits we call macroscopic, for their
distinguishability under measurement of a macroscopic observable, such as a current carried by a large number of
electrons, the magnetic field induced by such a current, or the position of an electron charge in a system with two
macroscopically distinguishable sites. The typical examples in this category are the superconducting qubits (with
exceptions).

C. Scope of this review article

This is not intended to be a comprehensive review of all theoretical work that has been done in the field of solid-
state quantum computation. Besides the discussion of some general concepts that apply for a broad range of possible
implementations in Sec. II, we concentrate on qubits based on the electron spin (Sec. III) in semiconductor structures
(quantum dots) and on superconducting circuits (Sec. IV), representing an example of a microscopic and a macroscopic
qubit.

Other solid-state proposals for quantum computation include quantum Hall systems (Privman et al., 1998;
Yang et al., 2002), anyons in fractional quantum Hall systems (Kitaev, 2003), the nuclear spin of donors in a semicon-
ductor (Kane, 1998), electron charge degrees of freedom in quantum dots (Barenco et al., 1995b; Brum and Hawrylak,
1997; Landauer, 1996; Tanamoto, 2000; Zanardi and Rossi, 1998), “flying” electron spin qubits in surface acoustic
waves (Barnes et al., 2000) or ballistic quantum wires (Popescu and Ionicioiu, 2004), ferroelectrically coupled quan-
tum dots (Levy, 2001), excitons (Biolatti et al., 2000; Chen et al., 2001; Troiani et al., 2000), SiGe quantum dots
(Vrijen et al., 2000), paramagnetic impurities in semiconductor quantum wells (Bao et al., 2003), Si-based solid-state
NMR (Ladd et al., 2002), and electrons on the surface of liquid He (Platzman and Dykman, 1999).

II. GENERAL CONCEPTS

A. The Loss-DiVincenzo proposal

The underlying idea of this proposal is that the spins of single electrons confined in semiconductor quantum dots
(e.g., in a two-dimensional semiconductor heterostructure) are to be used as qubits (Loss and DiVincenzo, 1998). The
required coupling between the qubits in this case is provided by the tunneling between adjacent quantum dots, giving
rise to a nearest-neighbor exchange coupling. The resulting spin Hamiltonian is that of the Heisenberg model,

H(t) =
∑

〈i,j〉

Jij(t)Si · Sj + µB

∑

i

giB(ri) · Si, (10)

where Si denotes the spin operator of the electron in the i-th quantum dot and Jij the exchange energy between spins
i and j.

It has to be noted, however, that this proposal for exchange-based QC extends far beyond electron spins in quantum
dots. Subsequent proposals for QC, using the nuclear spins of donor atoms buried in a silicon substrate (Kane,
1998), or using electron spins in SiGe quantum dots (Vrijen et al., 2000), electrons trapped by surface acoustic waves
(Barnes et al., 2000), and spins of paramagnetic impurities (Bao et al., 2003), rely on the same type of interaction.

In Eq. (10), we have also taken into account the Zeeman coupling to an external magnetic field B which may
be spatially varying. It may also be that the Lande g-factor gi is also be site-dependent in some semiconductor
heterostructures. The Bohr magnetic moment is denoted by µB. Structures with two coupled quantum dots where
the electron number could be controlled one-by-one down to a single electron per dot have recently been demonstrated
in GaAs-AlGaAs heterostructures (Elzerman et al., 2003), see Fig. 6.

In the “idle” phase, i.e., when no quantum gates are performed on the register, the exchange coupling would be
switched off Jij = 0 between all dots i and j. In order to perform an elementary two-qubit gate between dots i and j,
the exchange coupling between dots i and j is temporarily switched on, while leaving the other exchange couplings off.
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FIG. 1 Schematics of a quantum-dot array for quantum computing according to (Loss and DiVincenzo, 1998). Quantum dots
(dashed circles) are defined in a two-dimensional semiconductor heterostructure with metal gates (shown schematically in grey)
and host one (excess) electron (e) with a spin 1/2 each. By controlling the gate voltages, the coupling of adjacent quantum
dots is switched on and off for quantum gate operations.

(a) (b)
2

1 1

2

FIG. 2 Circuit notation of two exam-
ples of two-qubit gates that are universal
for quantum computation when combined
with single-qubit gates. (a) The ‘square-
root-of-swap’ (S) gate, (b) the XOR gate.

Several non-overlapping pairs of qubits can be coupled simultaneously in this way. A pulse Jij(t) with the property

1

~

∫

Jij(t
′)dt′ =

π

2
(mod 2π) (11)

generates the above-mentioned square-root of SWAP gate (up to an unimportant global phase factor e−iπ/8 which we
omit below),

S ≃ exp

(
i

~

∫

dt′H(t′)

)

= exp
(

i
π

2
Si · Sj

)

. (12)

The quantum gate S can be combined with single-spin rotations

Ui(φ) = exp(iφ · Si), (13)

to produce a controlled phase flip (CPF) (Loss and DiVincenzo, 1998),

UCPF = e−i π
2 ei π

2
Sz

1 e−i π
2

Sz
2SeiπSz

1S, (14)

which, up to a basis change, equals the quantum XOR gate:

UXOR = V UCPFV
†, (15)

V = exp(−iπSy
2/2). (16)

The effect of an inhomogeneous external magnetic field on the exchange interaction and the robustness of the
procedure described here are discussed in (de Sousa et al., 2001).

B. QC with anisotropic couplings

1. Ising and transverse (XY) coupling

Both for photon-mediated spin-spin coupling in a semiconductor microcavity (Imamoḡlu et al., 1999) and for induc-
tively coupled superconducting qubits (Makhlin et al., 1999, 2001), which will both be further discussed in Secs. III.E
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and IV below, the coupling takes an anisotropic form instead of being described by the isotropic Heisenberg Hamilto-
nian Eq. (10). In both cases, the form of the coupling turns out to be that of the XY (transverse) spin Hamiltonian,

HXY = J
∑

i,j

(Sx
i S

x
j + Sy

i S
y
j ) =

J

2






0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0




 , (17)

where we chose the Sz basis of the two interacting qubits for the matrix representation of HXY .
It is known that any generic two-qubit Hamiltonian gives rise to a universal set of gates when combined with

single-qubit operations. In two notable cases of anisotropic spin couplings, the Ising and the XY interactions, it is
known how the CPF and XOR gates can be constructed. In the case of a system described by the Ising Hamiltonian
HI = JSz

1S
z
2 and a homogeneous magnetic field in z direction, there is a particularly simple realization of the CPF

gate with constant parameters, namely UCPF = exp(iπ(1 − 2Sz
1 − 2Sz

2 + 4Sz
1S

z
2 )/4) (Loss and DiVincenzo, 1998).

For the transverse spin-spin coupling of Eq. (17), we find that a useful two-qubit gate, such as the conditional-
phase-flip (CPF) operation, can be carried out by combining HXY with one-bit rotations. The unitary evolution
operator generated by the Hamiltonian of Eq. (17) is

UXY (φ) = T exp

[

i

∫

dtHXY

]

= exp
[
iφ(Sx

i S
x
j + Sy

i S
y
j )
]

(18)

where φ =
∫
dtJ(t). The CPF gate (UCPF) can be realized by the sequence of operators (Burkard et al., 1999b;

Imamoḡlu et al., 1999)

UCPF = eiπ/4eiπni·σi/3eiπnj ·σj/3UXY (π/2)eiπσi
z/2UXY (π/2)eiπσi

y/4eiπσj
y/4 (19)

where σ denotes the vector Pauli operator, where S = σ/2, and ni = (1, 1,−1)/
√

3 and nj = (−1, 1, 1)/
√

3. The
XOR gate can be realized by combining the CPF operation with single-qubit rotations as in Eqs. (15) and (16).

While it is impossible to generate the CNOT gate with a single use of the XY Hamiltonian (Burkard et al., 1999b),
it is possible to generate a different universal quantum gate with the XY interaction in a single pulse; the CNOT +
SWAP (CNS) gate UCNS = USWAPUXOR, is generated as (Schuch and Siewert, 2003)

UCNS = H1UXY (π)e−iπσi
z/4e−iπσj

z/4H2, (20)

where Hi is the Hadamard gate

H =
1√
2

(
1 1
1 −1

)

, (21)

applied to qubit i.
Gate errors due to unwanted inhomogeneous magnetic fields during an otherwise isotropic coupling, effectively

creating an anisotropy, have been studied and quantified in (Hu and Das Sarma, 2003).

2. Anisotropy due to the spin-orbit coupling

The exchange interaction, Eq. (10), between electron spins in tunnel-coupled sites (such as quantum dots) can
acquire anisotropic terms due to spin-orbit coupling during tunneling between the sites (Kavokin, 2001). Surprisingly,
it turns out that the first-order effect of the spin-orbit coupling during quantum gate operations can be eliminated

G21

2

G

+G

FIG. 3 A circuit representation for
the conditional phase flip (CPF),
Eq. (14). The single qubit rotations

are G = ei π
2

Sz

, G† = e−i π
2

Sz

, and
G2 = eiπSz

. The CPF is related to
the XOR gate Eq. (7) by the basis
transformation Eq. (15).
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by using time-symmetric pulse shapes for the coupling between the spins (Bonesteel et al., 2001). A related, but
independent, result shows that the spin-orbit effects exactly cancel in the gate sequence on the right hand side
of Eq. (14) required to produce the quantum XOR gate, provided that the pulse form for the spin-orbit and the
exchange couplings are identical (Burkard and Loss, 2002). The XOR gate being universal when complemented with
single-qubit operations, this result implies that the spin-orbit coupling can be dealt with in any quantum computation.
In any real implementation, there will be some (small) discrepancy between the pulse shapes for the exchange and
the spin-orbit coupling; however, one can choose two pulse shapes which are very similar. It was shown that the
cancellation still holds to a very good approximation in such a case, i.e. the effect of the spin-orbit coupling will still
be strongly suppressed (Burkard and Loss, 2002). There is also an effect of dipolar interactions between adjacent
spins, providing another anisotropic coupling; this coupling can also be treated as an anisotropic contribution to
Eq. (10) and therefore cancels out in the gate sequence Eq. (14) for the same reasons as the spin-orbit interaction.

The spin-orbit coupling for a conduction-band electron is given by the following Hamiltonian
(Gantmakher and Levinson, 1987), being linear in the 2D momentum operator pi, i = x, y ([100] orientation
of the 2D plane),

Hso =
∑

i,j=x,y

βijσipj , (22)

where the constants βij depend on the strength of the confinement in z-direction and are of the order (1÷3) ·105 cm/s
for GaAs heterostructures. Combining the isotropic Heisenberg coupling (10) with the anisotropic exchange between
two localized spins S1 and S2 one obtains the Hamiltonian (Burkard and Loss, 2002)

H(t) = J(t) (S1 · S2 + A(t)) , (23)

where the anisotropic part is given by the expression (Kavokin, 2001),

A(t) = β(t) · (S1 × S2) + γ(t)(β(t) · S1)(β(t) · S2), (24)

and βi =
∑

j βij〈ψ1|ipj|ψ2〉 is the spin-orbit field, |ψi〉 the ground state in site (dot) i = 1, 2, and γ ≈ O(β0). As was

discussed in Sec. II.A, for A = 0, the quantum XOR gate can be obtained by applying H(t) twice, together with
single-spin rotations, see Eqs. (14) and (16). Moreover, if A = 0, then H(t) commutes with itself at different times
and the time-ordered exponential

U(ϕ) = T exp

(

−i
∫ τs/2

−τs/2

H(t) dt

)

(25)

is a function of the integrated interaction strength only, ϕ =
∫ τs/2

−τs/2
J(t)dt. In particular, U(ϕ = π/2) = U

1/2
sw = S is

the “square-root of swap” gate.
The interesting situation is of course A 6= 0. If in this case, β and γ (and thus A) are time-independent, then H(t)

still commutes with itself at different times and one can find a fixed coordinate system in which β is parallel to the
z axis. In this basis, the anisotropic term Eq. (24) can be expressed as

A = β(Sx
1S

y
2 − Sy

1S
x
2 ) + δSz

1S
z
2 , (26)

with δ = γβ2. In the singlet-triplet basis with basis vectors {|T+〉 = |↑↑〉, |S〉 = (|↑↓〉 − |↓↑〉)/
√

2, |T0〉 = (|↑↓〉 +

|↓↑〉)/
√

2, |T−〉 = |↓↓〉} the gate sequence Eq. (14), including the anisotropy Eq. (24), yields the unitary operation

Ug = diag(ie−iϕ(1+δ), 1, 1,−ie−iϕ(1+δ)), (27)

where diag(x1, . . . , x4) denotes the diagonal matrix with diagonal entries x1, . . . , x4. Note that the pulse strength
ϕ and the spin-orbit parameters only enter Ug in the Sz = ±1 subspaces. Moreover, the terms linear in β have
canceled out exactly in Ug. With the choice ϕ = π/2(1+ δ), one obtains the conditional phase flip gate Ug = UCPF =
diag(1, 1, 1,−1), being equivalent to the XOR up to the basis change, Eq. (16). Therefore, the anisoptropic terms
A = const. in the spin Hamiltonian cancel exactly in the gate sequence Eq. (15) for the quantum XOR.

We briefly discuss what happens if, as can be expected in real systems, the anisotropic terms in the Hamiltonian H
are not exactly proportional to J(t), i.e. if A(t) is time-dependent. Generally, both β and γ depend on time. In this
more general case, we cannot exactly eliminate the effect of the anisotropy because of the time-ordering in Eq. (25)
and since the Hamiltonian cannot be expected to commute with itself at different times, [H(t), H(t′)] 6= 0. The
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estimated gate errors ǫ = ||Ug −UCPF ||2 due to the anisotropy in the case where A(t) is only weakly time-dependent
are ǫ ≤ ∆2 where we use ∆β(t) = β(t) − β0 and

∆ = (|ϕ|β0/2) max
|t|≤τs/2

|(J(t)/J0)(β(t)/β0 − 1)|, (28)

where J0 stands for the average exchange coupling, J0 = ϕ/τs 6= 0. It can be shown (Burkard and Loss, 2002) that for
tunnel-coupled quantum dots, it is possible to choose a weakly time-dependent A by using Eq. (52) for the exchange
coupling and the result

b(d, q) ≡ |J(d, q)β(d, q)| = b0
√
qd exp(−2qd2), (29)

where b0 = a/a0
B, a0

B =
√

~/mω0, and where a is a constant depending on the spin-orbit parameter (for a 5 nm
wide [100] GaAs quantum well a ≈ 2 meV nm), q = ω/ω0. The minimal value of the quantum dot confinement
energy ω is denoted by ω0. A possible model for the switching process is the use of a time-dependent confinement
strength q(t) = ω(t)/ω0 = cosh2(αt/τs) (where alpha is a number of order 1, e.g., α = 4). This pulse shape has
favorable adiabatic properties (Burkard et al., 1999a; Schliemann et al., 2001b), as detailed in Sec. II.E, and leads to
a pulsed exchange interaction J(t) = J(d, q(t)) and spin-orbit field b(t) = b(d, q(t)), where −τs/2 ≤ t ≤ τs/2. The
resulting error was estimates in (Burkard and Loss, 2002) as ∆ ≈ 7 · 10−3, leading to gate errors occurring at a rate
ǫ ≈ 4∆2 ≈ 2 · 10−4 being around the currently known threshold for fault tolerant quantum computation (Preskill,
1998a,b). The error ǫ can be further reduced by performing the gates more slowly, with a long period of constant A
between the rise and fall of the pulses.

C. Universal QC with the exchange coupling

In some situations, a local controllable field Bi or g-factor gi in the Hamiltonian Eq. (10) and thus the single-qubit
operations SU(2) in the universal set Eq. (6) may be more costly to implement than the tunable exchange coupling
generating the spin-spin coupling U(2) (note, however, that there exist all-electric switching schemes using g-factor
modulation, see Sec. III.D). A scheme has been developed in which the Heisenberg interaction alone suffices to
exactly implement any quantum computer circuit, at a price of a factor of three in additional qubits and about a
factor of ten in additional two-qubit operations. However, the Heisenberg interaction by itself is not a universal gate
(Barenco et al., 1995a), in the sense that it cannot generate any arbitrary unitary transformation on a collection of
spin-1/2 qubits. This is why in Eq. (6), the Heisenberg interaction needs to be combined with some other means
of applying independent one-qubit gates. The Heisenberg interaction alone does not give a universal quantum gate
because it has too much symmetry: it commutes with the operators S2 and Sz, where the total spin is defined as

S =

n∑

i=1

Si, (30)

and therefore it can only rotate among states with the same S, Sz quantum numbers.

1. Encoding

The exchange coupling is thus not universal in the full Hilbert space; but, by working exclusively in one symmetry
sector of the Hilbert space with fixed S, Sz quantum numbers, the exchange coupling can be made universal. This
restriction is achieved by defining coded qubit states, ones for which the spin quantum numbers always remain the
same (Bacon et al., 2000; Kempe et al., 2001; Viola et al., 2000). The smallest number of spins 1/2 for which two
orthogonal states with identical S, Sz exist is three. The space of three-spin states with spin quantum numbers
S = 1/2, Sz = +1/2 is two-dimensional and will serve to represent our coded qubit. An explicit choice for the basis
states of this qubit are

|0L〉 = |S〉| ↑〉, (31)

|1L〉 =
√

2/3|T+〉| ↓〉 −
√

1/3|T0〉| ↑〉, (32)

where |S〉 =
√

1/2(| ↑↓〉 − | ↓↑〉) is the singlet state of spins 1 and 2 (see Fig. 4a) of the three-spin block, and

|T+〉 = | ↑↑〉 and |T0〉 =
√

1/2(| ↑↓〉 + | ↓↑〉) are triplet states of these two spins. While in principle this solves the
problem of exchange-only QC, in practice we would like to know what the overhead in terms of qubits (for coding) and
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1 2 3 4 5 6

qubit 1 qubit 2

a.

b.

FIG. 4 Possible layouts of spin-1/2 de-
vices. a) One-dimensional layout. We con-
sider two different assumptions about how
the exchange interactions can be turned
on and off in this layout: 1) At any given
time each spin can be exchange-coupled to
at most one other spin (we refer to this
as “serial operation” in the text), 2) All
exchange interactions can be turned on
simultaneously between any neighboring
pair of spins in the line shown (“1D parallel
operation”). b) Possible two-dimensional
layout with interactions in a rectangular
array. We imagine that any exchange in-
teraction can be turned on between neigh-
boring spins in this array (“2D parallel op-
eration”). Of course other arrangements
are possible, but these should be represen-
tative of the constraints that will be faced
in actual device layouts.

gates (for operating on encoded qubits with the exchange interaction) will be, and how a universal set of operations
on the encoded qubits can be achieved (DiVincenzo et al., 2000). It has also been found that the anisotropic XY
interaction (17) alone is sufficient for quantum computation (Kempe and Whaley, 2002), a result which was later
generalized to large class of anisotropic exchange Hamiltonians (Vala and Whaley, 2002). An encoding involving two
spins per qubit has also been demonstrated for universal quantum logic starting from locally alternating g-factors
(Levy, 2002) and from a homogeneous magnetic field combined with anisotropic exchange interactions (Wu and Lidar,
2002a,b; Wu et al., 2004).

2. One-qubit gates

A one-qubit gate on a single three-spin block is performed as follows. The Hamiltonian H12 generates a rotation

U12 = exp(i/~
∫
J ~S1 · ~S2dt) which is just a z-axis rotation (in Bloch-sphere notation) on the coded qubit, while

H23 produces a rotation about an axis in the x-z plane, at an angle of 120o from the z-axis. Since simultaneous
application of H12 and H23 can generate a rotation around the x-axis, three steps of 1D parallel operation (defined in
Fig. 4a) permit any one-qubit rotation, using the classic Euler-angle construction. In serial operation, it can be found
numerically that four steps are always adequate when only nearest-neighbor interactions are possible (e.g. the sequence
H12-H23-H12-H23 shown in Fig. 5a, with suitable interaction strengths), while three steps suffice if interactions can
be turned on between any pair of spins (e.g. H12-H23-H13, see Fig. 5b).

3. Two-qubit gates

The implementation of two-qubit gates for universal QC with the exchange interaction on two three-spin code
blocks is less intuitive that the corresponding task for one-qubit gates. Much of the difficulty of these searches arises
from the fact that while the four basis states |0L, 1L〉|0L, 1L〉 have total spin quantum numbers S = 1, Sz = +1,
the complete space with these quantum numbers for six spins has nine states, and exchanges involving these spins
perform rotations in this full nine-dimensional space. Numerical searches for the implementation of two-qubit gates
using a simple minimization algorithm (DiVincenzo et al., 2000) aided by the two-qubit gates invariants (Makhlin,
2002) have resulted in a sequence for an encoded CNOT operation that is depicted in Fig. 5. The solution shown in
Fig. 5c appears to be optimal for serial operation and happens to involve only nearest neighbors in the 1D arrangement
of Fig. 4a. There also are (apparently) optimal numerical solutions for parallel operation mode. For the 1D layout of
Fig. 4a, the simplest solution found involves 8 clock cycles with just 8*4 different interaction-time parameters (H12

can always be zero in this implementation). For the 2D parallel mode of Fig. 4b, a solution was found using just 7
clock cycles (7*7 interaction times).

In the present scheme, quantum computation would proceed as follows. In the beginning, all the computational
qubits would be set to the |0L〉 state which is easily obtained using the exchange interaction: if a strong H12 is
turned on in each coded block and the temperature made lower than the strength J of the interaction, these two
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FIG. 5 Circuits for implementing single-qubit and two-qubit
rotations using serial operations. a) Single-qubit rotations by
nearest-neighbor interactions. Four exchanges (double-headed
arrows) with variable time parameters τi are always enough to
perform any such rotation, one of the two possible layouts is
shown. b) Non-nearest neighbor interactions. Only three inter-
actions are needed, one of the possible layouts is shown. c) Cir-
cuit of 19 interactions that produce a cNOT between two coded
qubits (up to one-qubit gates before and after). The durations
of each interaction are given in units such that for t = 1/2 the

rotation Uij = exp(iJt~Si · ~Sj/~) is a SWAP, interchanging the
quantum states of the two spins i, j. The t̄i parameters are
not independent, they are related to the tis as indicated. The
uncertainty of the final digits of these times are indicated in
parentheses. With these uncertainties, the absolute inaccuracy
of the matrix elements of the two-qubit gate rotations achieved
is no greater than 6 × 10−5. Further fine tuning of these time
parameters would give the cNOT to any desired accuracy. In
a practical implementation, the exchange couplings J(t) would
be turned on and off smoothly; then the time values given here
provide a specification for the integrated value

∫
J(t)dt. The

functional form of J(t) is irrelevant, but its integral must be
controlled to the precision indicated.

spins will equilibrate to their ground state, which is the singlet state. The third spin in the block should be in the
| ↑〉 state, which can be achieved by also placing the entire system in a moderately strong magnetic field B, such that
kBT << gµBB < J (it can be shown that in a slightly more general scheme involving both the Sz = +1 and Sz = −1
subspaces, the last step can be omitted). After the computation, with the one- and two-qubit gates implemented
according to the schemes mentioned above, the final qubit measurement, we note that determining whether the spins
1 and 2 of the block are in a singlet or a triplet suffices to perfectly distinguish (DiVincenzo et al., 1999) |0L〉 from
|1L〉 (again, the state of the third spin does not enter).

4. Protection against errors

Codes of the type of Eqs. (31) and (32) have first been introduced as a computational basis in decoherence-free

subspaces, i.e., subspaces of a Hilbert space which are protected against errors with a certain type of symmetry
(Bacon et al., 2000; Kempe et al., 2001; Lidar et al., 1999, 1998; Zanardi and Rasetti, 1997). Moreover, it has been
suggested that the logical subspace may be energetically separated from the remaining Hilbert space and thus protected
against errors in a system where a certain combination of exchange couplings always remains switched on (Bacon et al.,
2001; Weinstein and Hellberg, 2004).

5. Related ideas

Encoded qubits of a different kind, so-called spin-cluster qubits (Meier et al., 2003a,b), have been proposed in or-
der to relax the requirements for control on the single-spin level while inheriting the favorable single-spin properties
such as long decoherence time and fast gate operating time. Spin cluster qubits are finite spin chains with Heisen-
berg or anisotropic (XY and Ising-like) antiferromagnetic exchange interaction that can have uniform or nonuniform
interaction constants.

The use of many-electron QDs for exchange-based quantum computations has been analyzed in (Vorojtsov et al.,
2004). A particular implementation of three-spin QDs encoding one qubit has been put forward in
(Kyriakidis and Penney, 2004).
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D. Optimization of quantum circuits

A quantum gate operating on n qubits can be represented as a 2n × 2n unitary matrix. Any quantum computation
or algorithm can be split up into a series of elementary gate operations drawn from a universal set involving only one or
two qubits, as in Eq. (6). This is the quantum circuit representation of quantum algorithms (or, unitary operations).
For a simple example, see Fig. 3 for a circuit representations of CPF in terms of sqrt-of-SWAP gates. However,
quantum circuits are in general not the most efficient way of implementing a quantum computation (Burkard et al.,
1999b). There are a number of related but different approaches using, e.g., genetic algorithms and chirped Gaussian
pulses (Sanders et al., 1999) or control theory (Khaneja et al., 2001).

If one is interested in optimizing the switching time τs for a desired unitary U , with a given Hamiltonian, e.g., the
spin Hamiltonian Eq. (10), one can depart from the circuit representation of the unitary by allowing arbitrary time
dependent parameters ~p(t) in the Hamiltonian. In the case of the spin Hamiltonian (10), we have ~p = (J,B1,B2, . . .).
We will only demonstrate this optimization in the case of a simple two-qubit unitary, the XOR (CNOT) gate. The
optimization method can in principle be applied to unitaries of any size; note, however, that the optimization as an
arbitrary classical computational task is typically a hard computation in itself.

1. Serial pulse mode

We first restrict ourselves to a special class of parameter functions ~p(t), in which at every time t, only one component
of ~p(t) is non-zero. If we further restrict ourselves to parameter functions in which the duration of the J-pulses with
~p = (J, 0, 0, . . .) are π/2 pulses generating the sqrt-of-swap S, then we are back to the circuit model with the universal
set Eq. (6) and U(2) = S. In this case we can optimize circuits, e.g., to have as few instances of S as possible.
E.g., it turns out that the use of two S for a CPF as in the sequence Eq. (14), and therefore, for XOR, is optimal.
Such minimal requirements for the implementation of a unitary U can be proven by analyzing the set P(U) of

product states
{

|Ψ〉 ∈ H = H⊗M
2

∣
∣
∣|Ψ〉 = |φ1〉 ⊗ · · · ⊗ |φM 〉; |φi〉 ∈ H2

}

which are mapped back onto product states by

U (Burkard et al., 1999b). An alternative method for determining whether a Hamiltonian generates a gate in a single
pulse involves the invariants under addition of single-qubit gates (Makhlin, 2002).

2. Parallel pulse mode

In the case where several or all parameters ~p can be changed simultaneously, we expect that a given quantum gate,
say XOR, can be performed faster than by changing only one parameter at a time as in the serial pulse mode. The
unitary time evolution operator after time t is the following functional in ~p,

Ut[~p(τ)] = T exp

(
i

~

∫ t

0

H(~p(τ)) dτ

)

, (33)

where T denotes the time-ordering. For a given quantum gate Ug, the integral equation Ut[~p(τ)] = Ug has to be solved
for the functions ~p(τ). An optimal solution is given by a set of bounded functions |pi(τ)| < Mi requiring minimal time
t for a fixed set of bounds Mi. In order to simplify the problem, one can restrict the problem to piecewise-constant
functions,

UN (~p (1), ..., ~p (N);φ) = eiφUN(~p (N)) · · ·U2(~p
(2))U1(~p

(1)),

Uk(~p (k)) = exp
{

itH(~p (k))
}

. (34)

For each of the N time intervals, one has the freedom to choose a new set of parameters ~p (k) = (J,B1,B2). The
discretized problem can now be treated both analytically and numerically (Burkard et al., 1999b).

One finds analytically that CPF can be implemented in a single step by fixing N = 1, i.e., all parameters in Eq. (10)
simultaneously non-zero but constant,

UCPF = exp [itH(J,B1,B2)] , (35)

The parameters are (in units of 2π~/t),

J = k − n− 2m− 1

2
, φ = −π(n+

1

2
)

B1 =
1

2
(0, 0, n+

1

2
+
√

k2 − J2) , B2 =
1

2
(0, 0, n+

1

2
−
√

k2 − J2), (36)



13

where n, and m are arbitrary integers, and k is an integer satisfying 2|k| ≥ |n+ 2m+ 1
2 |. In the specific case where

all constraints are equal to M , we find that the solution for k = 1, m = n = 0,

J =
1

2
, Bz

1 =
1

4
(1 +

√
3), Bz

2 =
1

4
(1 −

√
3), φ = −π

2
(37)

has the shortest switching time,

tCPF,p =
2π~

4M
(1 +

√
3) = 0.683

2π~

M
, (38)

less than half the time which is used for the serial pulse quantum circuit Eq. (14), tCPF,s = 1.5 · 2π~/M . Numerically,
one finds that XOR requires at least N = 2 steps,

UXOR = eiφeiφ exp
[

itH(~p (2))
]

exp
[

itH(~p (1))
]

, (39)

with the parameter values (in units of 2π~/t)

k J (k) B
(k)
1x B

(k)
2x B

(k)
1y B

(k)
2y B

(k)
1z B

(k)
2z

1 0.187 −0.025 0.464 0.205 0.195 −0.420 0.395

2 0.617 −0.220 0.345 −0.384 0.244 0.353 0.108

(40)

and the global phase φ = −0.8481 ·π, where the time t has to be chosen such that none of the parameters exceeds the
boundM . The total switching time for equal bounds is in this case tXOR,p = (0.4643+0.6170)2π~/M = 1.0813·2π~/M ,
compared to tXOR,s = 2 · 2π~/M for the serial switching.

3. Anisotropic systems

Parallel switching is also possible with the XY dynamics Eq. (17). It can be shown that UCPF requires two pulses,

UCPF = eiφ U2U1, (41)

where Uk = exp
[

2πiHXY,B(J (k), B(k)
x , B(k)

z )
]

, k = 1, 2.

Note that all magnetic fields can be chosen homogeneous (B
(k)
1 = B

(k)
2 ≡ B(k)) and perpendicular to the y-axis

(By = 0). Here we give one possible realization which is found numerically (φ = −3π/4):

k J (k) B
(k)
x B

(k)
z

1 0.7500 0.7906 0.5728

2 0.5000 0.0000 0.2500

(42)

The total switching time for CPF, assuming equal bounds MJ = MB ≡ M for J and B, is tXY
CPF,p = 1.291 · 2π~/M ,

compared to tXY
CPF,s = 2.167 · 2π~/M for the serial pulse sequence defined in Eq. (19).

In order to produce the XOR gate Eq. (7) we can implement the basis change Eq. (15) using the single-qubit
rotation V . This procedure requires a total of four steps for the XOR gate. Another way of achieving XOR is the
following sequence which we found numerically and which takes only three steps:

UXOR = exp(3iπ/4)U3U2U1, (43)

with the following parameters:

k J (k) B
(k)
1x B

(k)
2x B

(k)
1y B

(k)
2y B

(k)
1z B

(k)
2z

1 1.802 0.615 2.045 0.020 0.316 0.794 0.130

2 3.344 0.348 0.718 0.259 0.493 1.583 1.062

3 1.903 1.193 0.705 0.413 −0.305 0.589 0.604

(44)

The total switching time of tXY
XOR,p = 7.29 ·2π~/M (compared to 2.67 ·2π~/M using CPF and a basis change) indicates

that Eq. (44) is not an optimal solution.
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E. Adiabaticity

Quantum gates are generated by controlling the parameters in the Hamiltonian Eq. (10), Jij(t) and Bi(t) (or
gi(t)), as a function of time. E.g., the exchange coupling J depends on time via some physically controlled quantity,
such as an electric gate voltage v(t), i.e., J(t) = J(v(t)) (similarly for the effective g-factor g(t)). According to
Eq. (11), only the time integral

∫ τ

0
J(v(t))dt needs to assume a certain value (modulo 2π) in order to generate the

correct quantum gate and the pulse form of v(t) does not matter. However, the exchange interaction J(t) needs
to be switched adiabatically in order to avoid unwanted excitations in the system. The adiabaticity condition is
(Burkard et al., 2000a, 1999a,b) |v̇/v| ≪ δε/~, where δε is the energy scale on which excitations may occur. Here,
δε denotes the energy-level separation of a single dot, i.e., the smaller of either the single-electron level spacing or
the on-site Coulomb energy U required to add a second electron to a dot. A rectangular pulse leads to excitation of
higher levels, whereas an adiabatic pulse with amplitude v0 is e.g. given by v(t) = v0 sech(t/∆t) where ∆t controls the
width of the pulse. We need to use a switching time τs > ∆t, such that v(t=τs/2)/v0 becomes vanishingly small. We
then have |v̇/v| = |tanh(t/∆t)|/∆t ≤ 1/∆t, so we need 1/∆t≪ δε/~ for adiabatic switching. The Fourier transform
v(ω) = ∆tv0π sech(πω∆t) has the same shape as v(t) but width 2/π∆t. In particular, v(ω) decays exponentially in
the frequency ω, whereas it decays only with 1/ω for a rectangular pulse.

Adiabatic switching of the exchange coupling in two coupled quantum dots and the error probability for differ-
ent pulse forms have been studied numerically in (Schliemann et al., 2001b). Furthermore, corrections to the fully
adiabatic result have been investigated (Requist et al., 2004).

III. ELECTRON SPINS

Being a natural two-level system, the spin 1/2 of the electron represents an ideal candidate for a qubit. On the one
hand, the electron spin is typically quite well isolated from charge degrees of freedom (not completely, though, due
to, e.g., the spin-orbit coupling). In some situations, electron spin decoherence times in solids appear to be relatively
long, exceeding microseconds (Awschalom and Kikkawa, 1999; Kikkawa and Awschalom, 1998; Kikkawa et al., 1997).
On the other hand, single spins in solid-state structures are not readily available and controllable. However, large
experimental efforts are currently made to isolate and control single spins in solid-state structures. The spin-based
proposals for quantum information processing which will be discussed below are all based on artificial nano- or
micrometer-scale semiconductor structures, such as quantum dots (QDs) or microcavities.

A. Quantum Dots

In (Loss and DiVincenzo, 1998), a quantum register is proposed in which single electrons are trapped in quan-
tum dots (QDs) that are arranged in an array or lattice in a semiconductor structure, e.g., as in Fig. 1. Elec-
trically defined QDs in two-dimensional semiconductor heterostructures (typically, GaAs) are well-studied objects
(Kouwenhoven et al., 2001) in which charge transport has attracted much attention (Averin and Nazarov, 1992;
Kouwenhoven et al., 1997a; van der Wiel et al., 2003). In recent years, the controlled storage of a single electron—
and thus a spin 1/2 or qubit—in a QD has been achieved (Ciorga et al., 2000; Elzerman et al., 2003). Structures in
which two QDs, each containing a well-controlled number of electrons (down to a single electron), are adjacent and
tunnel-coupled, have been fabricated and studied (Elzerman et al., 2003). In Fig. 6, we show an electron micrograph
of a structure of the type that was used in (Elzerman et al., 2003). The tunneling of electrons between the two dots is
predicted to give rise to the spin exchange coupling JS1 · S2 in Eq. (10). In the next section, we are going to outline
a theory of this spin exchange mechanism.

B. Exchange in laterally coupled QDs

Due to the Coulomb interaction and the Pauli exclusion principle, the ground state of two coupled electron sites
(atoms, QDs) in the absence of a magnetic field is a spin singlet (a highly entangled spin state), while the spin triplet
states (one of them entangled) are typically separated by some energy gap J . This energy gap is called exchange

coupling, as it arises from virtual electron exchange between the two sites due to the interaction. The virtual electron
exchanges are allowed for opposite spins (spin singlet, S = 0) but forbidden by the Pauli principle for parallel spins
(spin triplet, S = 1), therefore the energy of the singlet is lowered by the interaction.

We now introduce a model for the two laterally coupled QDs containing one (conduction band) electron each
(Burkard et al., 1999a). The two-dot system is shown schematically in Fig. 7. It is essential that the electrons are
allowed to tunnel between the dots, and that the total wave function of the coupled system must be antisymmetric. It
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FIG. 6 Electron micrograph of a structure comprising two
QDs, defined by metal electrodes (bright structures) on the
surface of a GaAs/AlGaAs heterostructure (Courtesy of J.
Elzerman, TU Delft). The charge on the dots is controlled
in steps of single electron charges, down to one electron per
dot, by tuning the voltage applied to the plunger gates PL,R

and is monitored by measuring the conductance of (i.e., the
currents IQPC through) the quantum point contacts (QPCs)
Q-R and Q-L. Conductance spectroscopy was performed by
measuring the current Idot (Elzerman et al., 2003).
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FIG. 7 Two coupled QDs with one va-
lence electron per dot. Each electron is
confined to the xy plane. The spins of
the electrons in dots 1 and 2 are de-
noted by S1 and S2. The magnetic
field B is perpendicular to the plane,
i.e. along the z axis, and the elec-
tric field E is in-plane and along the x
axis. The quartic potential is given in
Eq. (48) and is used to model the cou-
pling of two harmonic wells centered at
(±a, 0, 0). The exchange coupling J be-
tween the spins is a function of B, E,
and the inter-dot distance 2a.

is this fact which introduces correlations between the spins via the charge (orbital) degrees of freedom. The electronic
Hamiltonian in the effective-mass approximation for the coupled system is then given by

H =
∑

i=1,2

h(ri,pi) + C +HZ = Horb +HZ, (45)

where the single-particle Hamiltonian,

h(ri,pi) =
1

2m

(

pi −
e

c
A(ri)

)2

+ exiE + V (ri), (46)

describes the electron dynamics confined to the xy-plane and

C =
e2

κ |r1 − r2|
, (47)

represents the Coulomb interaction (unscreened in this case where the dot diameter is small or comparable to the
screening length). The electrons have an effective mass m (m = 0.067me in GaAs) and carry a spin-1/2 Si. The
dielectric constant in GaAs is κ = 13.1. We allow for a magnetic field B = (0, 0, B) applied along the z-axis and
which couples to the electron charge via the vector potential A(r) = B

2 (−y, x, 0). We also allow for an electric field
E applied in-plane along the x-direction, i.e. along the line connecting the centers of the dots. The coupling of the
dots (which includes tunneling) can be modeled by a quartic potential,

V (x, y) =
mω2

0

2

(
1

4a2

(
x2 − a2

)2
+ y2

)

, (48)

which separates (for x around ±a) into two harmonic wells of frequency ω0, one for each dot, in the limit of large

inter-dot distance, i.e. for 2a≫ 2aB, where a is half the distance between the centers of the dots, and aB =
√

~/mω0

is the effective Bohr radius of a single isolated harmonic well. This choice for the potential is motivated by the
experimental fact (Kouwenhoven et al., 1997b; Tarucha et al., 1996) that the spectrum of single dots in GaAs is well
described by a parabolic confinement potential, e.g. with ~ω0 = 3 meV (Kouwenhoven et al., 1997b; Tarucha et al.,
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1996). We note that in this simplified model, increasing (decreasing) the inter-dot distance is physically equivalent to
raising (lowering) the inter-dot barrier, which can be achieved experimentally by e.g. applying a gate voltage between
the dots (Livermore et al., 1996; Waugh et al., 1995). Thus, the effect of such gate voltages is described in this model
simply by a change of the inter-dot distance 2a.

The magnetic field B also couples to the electron spins via the Zeeman term HZ = gµB

∑

i Bi · Si, where g is
the effective g-factor (g ≈ −0.44 for GaAs), and µB the Bohr magneton. The ratio between the Zeeman splitting
and the relevant orbital energies is small for all B-values of interest here; indeed, gµBB/~ω0 . 0.03, for B ≪ B0 =
(~ω0/µB)(m/me) ≈ 3.5 T, and gµBB/~ωL . 0.03, for B ≫ B0, where ωL = eB/2mc is the Larmor frequency, and
where we used ~ω0 = 3 meV. Thus, we can safely ignore the Zeeman splitting when we discuss the orbital degrees of
freedom and include it later into the effective spin Hamiltonian.

1. The Heitler-London approach

We consider first the Heitler-London (HL) approximation (also known as valence orbit approximation), and then
refine this approach by including hybridization as well as double occupancy in a Hund-Mulliken approach, which will
finally lead us to an extension of the Hubbard description. We will see, however, that the qualitative features of J as a
function of the control parameters are already captured by the simplest HL approximation for the artificial hydrogen
molecule described by Eq. 45.

The HL approximation is borrowed from molecular physics. In the present case, think of a hydrogen molecule H2.
The HL approach starts from single-dot ground-state (s wave) orbital wavefunctions ϕ(r) and combines them into
the (anti-) symmetric two-particle orbital state vector

|Ψ±〉 =
|12〉 ± |21〉
√

2(1 ± S2)
, (49)

the positive (negative) sign corresponding to the spin singlet (triplet) state, and S =
∫
d2rϕ∗

+a(r)ϕ−a(r) = 〈2|1〉
denoting the overlap of the right and left orbitals. A non-vanishing overlap implies that the electrons tunnel between
the dots (see also Sec. III.B.3). Here, ϕ−a(r) = 〈r|1〉 and ϕ+a(r) = 〈r|2〉 denote the one-particle orbitals centered
at r = (∓a, 0), and |ij〉 = |i〉|j〉 are two-particle product states. The exchange energy is then obtained through
J = ǫt − ǫs = 〈Ψ−|Horb|Ψ−〉 − 〈Ψ+|Horb|Ψ+〉. The single-dot orbitals for harmonic confinement in two dimensions in
a perpendicular magnetic field are the Fock-Darwin states (Darwin, 1930; Fock, 1928), which are the usual harmonic

oscillator states, magnetically compressed by a factor b = ω/ω0 =
√

1 + ω2
L/ω

2
0 , where ωL = eB/2mc denotes the

Larmor frequency. The ground state (energy ~ω = b~ω0) centered at the origin is

ϕ(x, y) =

√
mω

π~
e−mω(x2+y2)/2~. (50)

Shifting the single particle orbitals to (±a, 0) in the presence of a magnetic field we obtain ϕ±a(x, y) =

exp(±iya/2l2B)ϕ(x ∓ a, y), where the phase factor involving the magnetic length lB =
√

~c/eB is due to the gauge
transformation A±a = B(−y, x∓ a, 0)/2 → A = B(−y, x, 0)/2. We obtain (Burkard et al., 1999a)

J =
2S2

1 − S4

(

〈12|C +W |12〉 − Re〈12|C +W |21〉
S2

)

, (51)

where the overlap becomes S = exp(−mωa2/~− a2
~/4l4Bmω). Evaluation of the matrix elements of C and W yields

J =
~ω0

sinh
(
2d2(2b− 1

b )
)

[

c
√
b
(

e−bd2

I0(bd
2) − ed2(b−1/b)I0(d

2{b− 1

b
})
)

+
3

4b

(
1 + bd2

)

]

, (52)

where we introduce the dimensionless distance d = a/aB, and I0 is the zeroth order Bessel function. The first and
second terms in Eq. (52) are due to the Coulomb interaction C, where the exchange term enters with a minus sign.

The parameter c =
√

π/2(e2/κaB)/~ω0 (≈ 2.4, for ~ω0 = 3 meV) is the ratio between Coulomb and confining energy.
The last term comes from the confinement potential W . The result J(B) is plotted in Fig. 8 (dashed line). Note that
typically |J/~ω0| . 0.2. Also, we see that J > 0 for B = 0, which must be the case for a two-particle system that
is time-reversal invariant (Mattis, 1988). The most remarkable feature of J(B), however, is the change of sign from
positive to negative at B = Bs

∗, which occurs over a wide range of parameters c and a. This singlet-triplet crossing
occurs at about Bs

∗ = 1.3 T for ~ω0 = 3 meV (c = 2.42) and d = 0.7. The transition from antiferromagnetic (J > 0)
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FIG. 8 Exchange energy J in units of meV plotted against
the magnetic field B (in units of Tesla), as obtained from the
s-wave Heitler-London approximation (dashed line), Eq. (52),
and the result from the improved sp-hybridized Heitler-London
approximation (triangles) which is obtained numerically as ex-
plained in the text. Note that the qualitative behavior of the
two curves is similar, i.e. they both have zeroes, the s-wave
approximation at Bs

∗, and the sp-hybridized approximation at
Bsp

∗ , and also both curves vanish exponentially for large fields.
B0 = (~ω0/µB)(m/me) denotes the crossover field to magneti-
cally dominated confining (B ≫ B0). The curves are given for
a confinement energy ~ω0 = 3meV (implying for the Coulomb
parameter c = 2.42), and inter-dot distance a = 0.7 aB.

to ferromagnetic (J < 0) spin-spin coupling with increasing magnetic field is caused by the long-range Coulomb
interaction, in particular by the negative exchange term, the second term in Eq. (52). As B ≫ B0 (≈ 3.5 T for
~ω0 = 3 meV), the magnetic field compresses the orbits by a factor b ≈ B/B0 ≫ 1 and thereby reduces the overlap
of the wavefunctions, S2 ≈ exp(−2d2(2b − 1/b)), exponentially strongly. Similarly, the overlap decays exponentially
for large inter-dot distances, d ≫ 1. Note however, that this exponential suppression is partly compensated by the
exponentially growing exchange term 〈12|C|21〉/S2 ∝ exp(2d2(b− 1/b)). As a result, the exchange coupling J decays
exponentially as exp(−2d2b) for large b or d, as shown in Fig. 9b for B = 0 (b = 1). Thus, the exchange coupling J
can be tuned through zero and then suppressed to zero by a magnetic field in a very efficient way.

2. Limitations and extensions of HL

We note that the HL approximation breaks down explicitly (i.e. J becomes negative even when B = 0) for certain
inter-dot distances if the interaction becomes too strong (c exceeds ≈ 2.8).

The HL method can be improved by taking into account more than one single-dot orbital. Admixture of higher
orbitals can be taken into account using a variational approach; the orbitals obtained in this way are termed hybridized

orbitals, in analogy to hybridized molecular orbitals in chemistry. Some results obtained with sp-hybridized QD
orbitals are plotted in Fig. 8.

Another limitation of the HL approximation its restriction to quantum dots that are occupied with a single electron.
Even with a single orbital, the Pauli principle allows for the presence of a second electron with opposite spin on a
QD orbital. While this admixture of double occupancy is suppressed by the repulsive Coulomb interaction between
electrons, it nevertheless plays a relevant role.

3. The Hund-Mulliken approach and the Hubbard Limit

The Hund-Mulliken (HM) approximation (also known as molecular orbit approximation (Mattis, 1988)) extends
the HL approach by including also the two doubly occupied states, which both are spin singlets (Burkard et al.,
1999a). This extends the orbital Hilbert space from two to four dimensions. First, the single particle states have to

be orthonormalized, leading to the states Φ±a = (ϕ±a − gϕ∓a)/
√

1 − 2Sg + g2, where S again denotes the overlap of

ϕ−a with ϕ+a and g = (1 −
√

1 − S2)/S. Then, diagonalization of

Horb = 2ǫ+








U X −
√

2tH 0

X U −
√

2tH 0

−
√

2tH −
√

2tH V+ 0

0 0 0 V−








(53)

in the space spanned by Ψd
±a(r1, r2) = Φ±a(r1)Φ±a(r2), Ψs

±(r1, r2) = [Φ+a(r1)Φ−a(r2)±Φ−a(r1)Φ+a(r2)]/
√

2 yields

the eigenvalues ǫs± = 2ǫ+UH/2 + V+ ±
√

U2
H/4 + 4t2H, ǫs0 = 2ǫ+UH − 2X + V+ (singlet), and ǫt = 2ǫ+ V− (triplet),

where the quantities are given in (Burkard et al., 1999a). The exchange energy then becomes

J = ǫt − ǫs− = V − UH

2
+

1

2

√

U2
H + 16t2H. (54)
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FIG. 9 The exchange coupling J obtained from HM (full line), Eq. (54), and from the extended Hubbard approximation
(dashed line), Eq. (55). For comparison, we also plot the usual Hubbard approximation where the long-range interaction term
V is omitted, i.e. J = 4t2H/UH (dashed-dotted line). In (a), J is plotted as a function of the magnetic field B at fixed inter-dot
distance (d = a/aB = 0.7), and for c = 2.42, in (b) as a function of inter-dot distance d = a/aB at zero field (B = 0), and again
c = 2.42. For these parameter values, the s-wave Heitler-London J , Eq. (52), and the HM J (full line) are almost identical.

In the standard Hubbard approach for short-range Coulomb interactions (and without B-field) (Mattis, 1988) J

reduces to −U/2 +
√
U2 + 16t2/2, where t denotes the hopping matrix element, and U the on-site repulsion. Thus,

tH and UH are the extended hopping matrix element and the on-site repulsion, resp., renormalized by long-range
Coulomb interactions. The remaining two singlet energies ǫs+ and ǫs0 are separated from ǫt and ǫs− by a gap of
order UH and are therefore neglected for the study of low-energy properties. Typically, the “Hubbard ratio” tH/UH

is less than 1, e.g., if d = 0.7, ~ω0 = 3 meV, and B = 0, we obtain tH/UH = 0.34, and it decreases with increasing B.
Therefore, we are in an extended Hubbard limit, where J takes the form

J =
4t2H
UH

+ V. (55)

The first term has the form of the standard Hubbard approximation (Fradkin, 1991) but with tH and UH being
renormalized by long-range Coulomb interactions. The second term V is new and accounts for the difference in
Coulomb energy between the singly occupied singlet and triplet states Ψs

±. It is precisely this V that makes J
negative for high magnetic fields, whereas t2H/UH > 0 for all values of B (see Fig. 9a). Thus, the usual Hubbard
approximation (i.e. without V ) would not give reliable results, neither for the B-dependence (Fig. 9a) nor for the
dependence on the inter-dot distance a (Fig. 9b). Since only the singlet space has been enlarged, it is clear that we
obtain a lower singlet energy ǫs than that from the s-wave Heitler-London calculation, but the same triplet energy ǫt,
and therefore J = ǫt − ǫs exceeds the s-wave Heitler-London result, Eq. (52). However, the on-site Coulomb repulsion
U ∝ c strongly suppresses the doubly occupied states Ψd

±a and already for the value of c = 2.4 (corresponding to
~ω0 = 3meV) we obtain almost perfect agreement with the s-wave Heitler-London result (Fig. 8). For large fields,

i.e. B ≫ B0, the suppression becomes even stronger (U ∝
√
B) because the electron orbits become compressed

with increasing B and two electrons on the same dot are confined to a smaller area leading to an increased Coulomb
energy. Being a completely orbital effect, the exchange interaction between spins of course competes with the Zeeman
coupling HZ of the spins to the magnetic field. In our case, however, the Zeeman energy HZ is small and exceeds the
exchange energy (polarizing the spins) only in a narrow window (about 0.1 T wide) around Bsp

∗ and again for high
fields (B > 4 T).

4. Numerical work

While the calculation discussed in Sec. III.B.3 above take only the ground-state orbital in each QD into account, the
HM, like the HL, approximation can be refined to include more orbital levels of the QDs. Such extended calculations
are usually done numerically, and are very closely related to Hartree-Fock (HF) calculations. Note, however, that HF
is not sufficient for the purpose of calculating a spin exchange coupling, since it is not capable of including entangled
(quantum correlated) states such as the spin singlet or m = 0 triplet. This is typically remedied by invoking the
so-called configuration-interaction method which includes linear superpositions of HF states. Numerical studies of
the double-dot system with one (Hu and Das Sarma, 2000) and three (Hu and Das Sarma, 2001) electrons per QD
showed good agreement with the somewhat more crude approximations discussed above.
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FIG. 10 The exchange coupling J measured as a func-
tion of the applied magnetic field B⊥ using conductance
spectroscopy in a two-electron dot system defined in
a GaAs/AlGaAs heterostructure. There are signatures
that a double has been formed although a single dot
structure was used in the experiment (Zumbühl et al.,
2004). The shape of the dot is not circular, but some-
what elongated. The dot spectra appear to be consis-
tent with a parabolic potential with harmonic energies
~ωa = 1.2 meV and ~ωb = 3.3 meV, corresponding to a
spatial elongation of

√

ωb/ωa ∼ 1.6. (Figure courtesy of
D. M. Zumbühl, Harvard University).

At finite magnetic field, the exchange coupling Eq. (52) can be tuned through zero by changing electrostatic
properties (QD size, distance, electric field). It has been confirmed both numerically and in actual experiment
(Kyriakidis et al., 2002) that singlet-triplet crossings can be induced in a single QD by changes in the dot potential
at constant magnetic field.

5. Measurements of QD exchange

Signatures of singlet-triplet crossings have been observed using transport spectroscopy in lateral GaAs quantum
dot structures (Zumbühl et al., 2004) (see Fig. 10). Although a single dot structure was used, there are signatures
that a double dot was formed in the experiment (Engel et al., 2004).

These data seem to be in rather good qualitative agreement with theory (Burkard et al., 1999a), bearing in mind that
the absolute magnitude of the exchange coupling J strongly depends on the inter-dot distance which is a free parameter
of the theory. Similar double-dot experiments with the double-dot systems shown in Fig. 6 are in preparation.

C. Exchange in vertically coupled QDs

While lateral QDs are adjacent to each other in a two-dimensional electron gas, vertically coupled QDs are stacked
on top of each other in a three-dimensional semiconductor structure. Vertical coupling occurs both in QDs etched
out of multilayer structures and electrically gated (Austing et al., 1998) and in self-assembled QDs originating from
the Stranski-Krastanov growth (Fafard et al., 1999; Fricke et al., 1996; Luyken et al., 1998). A system of vertically
coupled QDs is shown schematically in Fig. 11. There are a number of works on the exchange coupling between
spins located in this type of coupled QDs (Burkard et al., 2000c; Imamura et al., 1998, 1996, 1999; Oh et al., 1996;
Tokura et al., 1999). This Section in devoted to the exchange coupling between spins in vertically coupled dots under
the influence of both in-plane magnetic and electric fields, B‖ and E‖, and perpendicular fields B⊥, E⊥ (Burkard et al.,
2000c). Electronic spectra and charge densities for two electrons in a system of vertically tunnel-coupled QDs at zero

aB-

B+a

x, B , E

z

-a

+a

V(z)
a) b)

z, B  ,E

y
FIG. 11 (a) Sketch of the vertically coupled double
quantum-dot system. The two dots may have different
lateral diameters, aB+ and aB−. We consider magnetic
and electric fields applied either in-plane (B‖, E‖) or per-
pendicularly (B⊥, E⊥). (b) The model potential for the
vertical confinement is a double well, which is obtained
by combining two harmonic wells at z = ±a.
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magnetic field, B = 0, were calculated in (Bryant, 1993). Singlet-triplet crossings in the ground state of single
(Wagner et al., 1992; Wojs et al., 1996) and coupled dots with two (Oh et al., 1996) to four (Imamura et al., 1998,
1996, 1999; Tokura et al., 1999) electrons in vertically coupled dots in the presence of a magnetic field perpendicular
to the growth direction (B⊥ in Fig. 11) have been predicted. In order to apply the HL and HM methods introduced
in Sec. III.B to vertically coupled QDs, a Hamiltonian of the same form as Eq. (45) can be used, but with the
single-particle Hamiltonian replaced by (Burkard et al., 2000c)

h(r,p) =
1

2m

(

p − e

c
A(r)

)2

+ ezE + Vl(r) + Vv(r). (56)

Also note that r is a three-dimensional vector here, as opposed to a two-dimensional vector in Sec. III.B. The
potential Vl in h describes the lateral confinement, whereas Vv models the vertical double-well structure. For the
lateral confinement the parabolic potential

Vl(x, y) =
m

2
ω2

z

{

α2
0+(x2 + y2), z > 0,

α2
0−(x2 + y2), z < 0,

(57)

is chosen, where we have introduced the anisotropy parameters α0± determining the strength of the vertical relative
to the lateral confinement. In the presence of a magnetic field B⊥ perpendicular to the 2DES, the one-particle
problem has the Fock-Darwin states (Darwin, 1930; Fock, 1928) as an exact solution. Furthermore, it has been shown
experimentally (Fricke et al., 1996) and theoretically (Wojs et al., 1996) that a two-dimensional harmonic confinement
potential is a reasonable approximation to the real confinement potential in a lens-shaped SAD. In describing the
confinement Vv along the inter-dot axis, a (locally harmonic) double well potential of the form (see Fig. 11b)

Vv =
mω2

z

8a2

(
z2 − a2

)2
, (58)

can be used; in the limit of large inter-dot distance a ≫ aB, the potential Vv in the vicinity of z ≈ ±a becomes a
harmonic well of frequency ωz. Here a is half the distance between the centers of the dots and aB =

√

~/(mωz) is
the vertical effective Bohr radius. For most vertically coupled dots, the vertical confinement is determined by the
conduction band offset between different semiconductor layers; therefore in principle a square-well potential would
be a more accurate description of the real potential than the harmonic double well (note however, that the required
conduction-band offsets are not always known exactly). There is no qualitative difference between the results presented
below obtained with harmonic potentials and the corresponding results obtained using square-well potentials (Seelig,
1999).

1. Perpendicular Magnetic Field B⊥

For a magnetic field B = B⊥ (cf. Fig. 11) and E = 0, one obtains the ground-state Fock-Darwin (Darwin, 1930;
Fock, 1928) solution

ϕ±a(x, y, z) =
(mωz

π~

)3/4 √
α±e

−mωz(α±(x2+y2)+(z∓a)2)/2~, (59)

corresponding to the ground-state energy ǫ± = ~ωz(1 + 2α±)/2. In Eq. (59) we have introduced α±(B) =
√

α2
0± + ωL(B)2/ω2

z =
√

α2
0± +B2/B2

0 , with ωL(B) = eB/2mc the Larmor frequency and B0 = 2mcωz/e the mag-

netic field for which ωz = ωL. The parameters α±(B) describe the compression of the one-particle wave function
perpendicular to the magnetic field. The HL with this Hamiltonian yields

J =
2S2

1 − S4
~ωz

[

c
√
µe2µd2

(

1 − erf
(

d
√

2µ
))

− c

π

α+ + α−
√

1 − (α+ + α− − 1)2
arccos(α+ + α− − 1)

+
1

4

(
α2

0+ − α2
0−

)
(
α+ − α−

α+α−

)

(1 − erf(d)) +
3

4

(
1 + d2

)
]

, (60)

where erf(x) denotes the error function. We have introduced the dimensionless parameters d = a/aB for the inter-dot

distance, and c =
√

π/2(e2/κaB)/~ωz for the Coulomb interaction. Note that α±, µ = 2α+α−/ (α+ + α−), and the
overlap

S = 2

√
α+α−

α+ + α−
exp(−d2), (61)
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FIG. 12 Exchange energy J (left graph) and single-electron tunneling amplitude t (right graph) as a function of the applied
magnetic field for two vertically coupled small (height 6 nm, width 12 nm) InAs (m = 0.08me, κ = 14.6) self-assembled QDs
in a center-to-center distance of 9 nm (d = 1.5). The box-shaped symbols correspond to the magnetic field B⊥ applied in z
direction, the circle symbols to the field B‖ in x direction. The plotted results were obtained using the HM method and are
reliable up to a field B0 ≈ 15 T where higher levels start to become important.

depend on the magnetic field B. The first term in the square brackets in Eq. (60) is an approximate evaluation of the
direct Coulomb integral 〈12|C|12〉 for d & 0.7 and for magnetic fields B . B0. The second term in Eq. (60) is the
(exact) exchange Coulomb integral 〈12|C|21〉/S2, while the last two terms stem from the potential integrals, which
were also evaluated exactly. If the two dots have the same size, the expression for the exchange energy Eq. (60) can
be simplified considerably.

For two vertically coupled dots of equal size, we set α0+ = α0− ≡ α0 in Eq. (60) and using Eq. (61), we obtain

J =
~ωz

sinh(2d2)

[

c
√
αe2αd2

(

1 − erf
(

d
√

2α
))

− c

π

2α
√

1 − (2α− 1)2
arccos(2α− 1) +

3

4

(
1 + d2

)

]

, (62)

where α =
√

α2
0 +B2/B2

0 . As before, the first term in Eq. (62) is the direct Coulomb term, while the second term
(appearing with a negative sign) is the exchange Coulomb term. Finally, the potential term in this case equals
W = (3/4)(1 + d2) and is due to the vertical confinement only. For two dots of equal size neither the prefactor
2S2/(1 − S4) nor the potential term depends on the magnetic field. Since the direct Coulomb term depends on B⊥

only weakly, the field dependence of the exchange energy is mostly determined by the exchange Coulomb term. The
exchange coupling can also be calculated using the HM method (Burkard et al., 2000c).

The dependence of the exchange energy J on an electric field E⊥ applied in parallel to the magnetic field, i.e.
perpendicular to the xy plane, withing the HL approximation, was found to be

J(B,E⊥) = J(B, 0) + ~ωz
2S2

1 − S4

3

2

(
E⊥

E0

)2

, (63)

where E0 = mω2
z/eaB. The growth of J is thus proportional to the square of the electric field E⊥, if the field is

not too large. This result is supported by a HM calculation, yielding the same field dependence at small electric
fields, whereas if eE⊥a is larger than UH , double occupancy must be taken into account. The electric field causes
the exchange J at a constant magnetic field B to cross through zero from J(E = 0, B) < 0 to J > 0. This effect is
signaled by a change in the magnetization M (Burkard et al., 2000c).

2. In-plane magnetic field B‖

In this section we consider two dots of equal size in a magnetic field B‖ which is applied along the x-axis, i.e.
in-plane (see Fig. 11). Since the two dots have the same size, the lateral confining potential Eq. (III.B) reduces
to V (x, y) = mω2

zα
2
0(x

2 + y2)/2, where the parameter α0 describes the ratio between the lateral and the vertical
confinement energy. The vertical double-dot structure is modeled using the potential Eq. (58). The situation for an
in-plane field is a bit more complicated than for a perpendicular field, because the planar and vertical motion do
not separate. In order to find the ground-state wave function of the one-particle Hamiltonian h0

±a, an approximate
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variational method can be applied (Burkard et al., 2000c) with the result

ϕ±a =
(mωz

π~

) 3
4

(α0αβ)
1
4 exp

[

−mωz

2~

(
α0x

2 + αy2 + β(z ∓ a)2
)
± i

ya

2l2B

]

, (64)

where the parameters α(B) =
√

α2
0 + (B/B0)2 and β(B) =

√

1 + (B/B0)2, describing the wave-function compression
in y and z direction, respectively, have been introduced.

The resulting exchange coupling J in this case is

J(B, d) = J0(B, d) − ~ωz
4S2

1 − S4

β − α

α
d2

(
B

B0

)2

, (65)

where J0 denotes the expression from Eq. (51). The variation of the exchange energy J as a function of the magnetic
field B is, through the prefactor 2S2/(1−S4), determined by the overlap S(B, d) = exp[−d2(β(B)+(B/B0)

2)/α(B)],
depending exponentially on the in-plane field, while for a perpendicular field the overlap is independent of the field
(for two dots of equal size), see Eq. (61). The HL result can again be improved by performing a molecular-orbital
(HM) calculation of the exchange energy, which we plot in Fig. 12 (left graph, circle symbols).

3. Electrical switching of the interaction

Operating a coupled quantum dot as a quantum gate requires the ability to switch on and off the interaction
between the electron spins on neighboring dots. A simple method of achieving a high-sensitivity switch for vertically
coupled dots involves a horizontally applied electric field E‖. The idea is to use a pair of QDs with different lateral
sizes, e.g. a small dot on top of a large dot (α0+ > α0−, see Fig. 11). Note that only the radius in the xy plane has
to be different, while it can be assumed that the dots have the same height. Applying an in-plane electric field E‖

in this case causes a shift of the single-dot orbitals by ∆x± = eE‖/mω
2
zα

2
0± = E‖/E0α

2
0±, where E0 = ~ωz/eaB, see

Fig. 13. It is clear that the electron in the larger dot moves further in the (reversed) direction of the electric field
(∆x− > ∆x+), since its confinement potential is weaker. As a result, the mean distance between the two electrons
changes from 2d to 2d′, where

d′ =

√

d2 +
1

4
(∆x− − ∆x+)2 =

√

d2 +A2

(
E‖

E0

)2

, (66)

with A = (1/α2
0− − 1/α2

0+)/2. Using Eq. (61), we find that the wavefunction overlap scales as S ∝ exp(−d′2) ∝
exp[−A2(E‖/E0)

2]. Due to this high sensitivity, the electric field is an ideal “switch” for the exchange coupling J

which is (asymptotically) proportional to S2 and thus decreases exponentially on the scale E0/2A. Note that if the
dots have exactly the same size, then A = 0 and the effect vanishes. An estimate of J as a function of E‖ can be
obtained by substituting d′ from Eq. (66) into the HL result, Eq. (60). A plot of J(E‖) obtained in this way is shown
in Fig. 13 for a specific choice of GaAs dots. Note that this procedure is not exact, since it neglects the tilt of the
orbitals with respect to their connecting line. Exponential switching is highly desirable for quantum computation,
because in the “off” state of the switch, fluctuations in the external control parameter (e.g. the electric field E‖)
or charge fluctuations cause only exponentially small fluctuations in the coupling J . If this were not the case, the
fluctuations in J would lead to uncontrolled coupling between qubits and therefore to multiple-qubit errors. Such
correlated errors cannot be corrected by known error-correction schemes, which are designed for uncorrelated errors
(Preskill, 1998b).

D. Single-qubit operations

Single-qubit operations with the Hamiltonian Eq. (10) require a time-varying Zeeman coupling (gµBS · B)(t)
(Burkard et al., 1999a; Loss and DiVincenzo, 1998), which can be controlled by changing the magnetic field B or the
g-factor g. Effective magnetic fields/g-factors can be produced by coupling the spin via exchange to a ferromagnet
(Loss and DiVincenzo, 1998) or to polarized nuclear spins (Burkard et al., 1999a). We review here how the g-factor
of an electron in a semiconductor heterostructure can be modulated by shifting its orbital between layers of host
material with different g-factors (DiVincenzo et al., 1999; DiVincenzo and Loss, 1999).

The spin-orbit coupling can leads to large deviations of the Landé g-factor (both in the positive and negative
direction) in bulk semiconductors from the free-electron value g0 = 2.0023. The effective g-factors in these materials
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FIG. 13 Controlled switching of the exchange coupling J between
dots of different size by means of an in-plane electric field E‖ at
zero magnetic field, B = 0. The coupling is “on” at E = 0. When
E‖ is applied, the larger dot is shifted to the right by ∆x−, whereas

the smaller dot is shifted by ∆x+ < ∆x−, where ∆x± = E‖/E0α
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and E0 = ~ωz/eaB . With E‖ increasing, J decreases exponentially,
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are ~ωz = 7meV, d = 1, α0+ = 1/2 and α0− = 1/4, yielding
E0 = ~ωz/eaB = 0.56 mV/nm and A = (α2
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6. The coupling J decreases exponentially on the scale E0/2A =
0.047 mV/nm for the electric field.

-50 -25 0 25 50
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

E (mV/nm)

g  
ef

f

GaAs

AlGaAs

InAlGaAs

FIG. 14 Effective g-factor geff of electrons confined in
a AlxGa1−xAs–GaAs–InyAlxGa1−x−yAs–AlxGa1−xAs
heterostructure (x = 0.3, y = 0.1) as a function
of the applied electric field E in growth direction.
The widths of the quantum well and the barriers are
w = wB = 10 nm. The g-factors which are used for the
materials are indicated with dashed horizontal lines.

range from large negative to large positive numbers. In confined structures such as quantum wells, wires, and dots,
the g-factor is modified with respect to the bulk value and sensitive to an external bias voltage (Ivchenko et al.,
1997). In the case of a layered structure, the effective g-factor of electrons can be varied by electrically shifting their
equilibrium position from one layer (with g-factor g1) to another (with another g-factor g2 6= g1). The bulk g-factors of
the layer materials and linear interpolations between them, have been used here as an approximation which becomes
increasingly inaccurate as the layers become thinner (Kiselev et al., 1998).

Let us assume that by replacing some fraction y of Ga atoms in the upper half of a AlGaAs-GaAs-AlGaAs quantum
well by In atoms (we have used y = 0.1) we obtain the following layered heterostructure:

AlxGa1−xAs–GaAs–InyAlxGa1−x−yAs–AlxGa1−xAs,

where x denotes the Al content in the barriers (typically around 30%). In such a structure, the effective g-factor can be
modified by changing the vertical position of the electrons via top or back gates. If the electron is mostly in a pure GaAs
environment, then its effective g-factor will be around the GaAs bulk value (gGaAs = −0.44) whereas if the electron is
in the InAlGaAs region, the g-factor will be more negative due to the large negative InAs value (gInAs = −15). The
one-dimensional problem of one electron in such a structure has been analyzed numerically. When the effective mass
m(z) is spatially varying, the Hamiltonian in the effective mass approximation can be written as

[

− d

dz

~
2

2m(z)

d

dz
+ V (z)

]

Ψ(z) = EΨ(z). (67)

This problem can be discretized in real space and subsequently diagonalized numerically (DiVincenzo et al., 1999).
Finally, the effective g-factor is calculated by averaging the local g-factor g(z) over the electronic density in the
ground-state (see Fig. 14),

geff =

∫

dzg(z)|Ψ(z)|2. (68)

The option of performing single-qubit rotations by electrostatically controlling the g-factor makes all-electric control of
a spin-based quantum computer (an array of QDs as in Fig. 1) possible and thus offers a way around the problematic
local magnetic field implementation of single-qubit gates. Another method to circumvent single-spin operations
completely (however, at a higher cost of gates and exchange operations) is the exchange-only architecture outlined in
Sec. II.C.
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FIG. 15 Left: QDs embed-
ded inside a microdisk struc-
ture, from (Imamoḡlu et al.,
1999). Each QD is ad-
dressed selectively by a laser
field from a fiber-tip. The
laser frequencies are chosen
to select out the pair of QDs
that will participate in gate
operation. All dots strongly
couple to a single cavity-
mode. Right: Energy lev-
els of a III-V (or II-VI) semi-
conductor QD. It is assumed
that confinement along the
z-direction is strongest.

E. Semiconductor microcavities

Here, we present a modification of the Loss-DiVincenzo scheme (Sec. II.A) for QC based on QD electron spins. In
contrast to the original scheme (Loss and DiVincenzo, 1998), where the spins are coupled via direct exchange, this
coupling which is mediated through a single microcavity mode and uses laser fields to mediate coherent interactions
between distant QD spins (Imamoḡlu et al., 1999).

The cavity scheme is shown in Fig. 15: the doped QDs are embedded in a microdisk structure with diameter
d ≃ 2µm and thickness d ≃ 0.1µm. Experiments have shown that InAs self-assembled QDs can be embedded in
microdisk structures with a cavity quality factor Q ≃ 12000 (Gerard and Gayral, 1999). It is assumed that the QDs
are designed such that the quantum confinement along the z-direction is the strongest. The in-plane confinement is
also assumed to be large enough to guarantee that the electron will always be in the ground-state orbital. Because
of the strong z-axis confinement, the lowest energy eigenstates of such a III-V or II-VI semiconductor QD consist
of |mz = ±1/2〉 conduction-band states and |mz = ±3/2〉 valence-band states. The QDs are doped such that each
QD has a full valence band and a single conduction band electron: we assume that a uniform magnetic field along
the x-direction (Bx) is applied, so the QD qubit is defined by the conduction-band states |mx = −1/2〉 = |↓〉 and
|mx = 1/2〉 = |↑〉 (Fig. 15, right).

1. Single-qubit operations

Single-bit operations are carried out in this scheme by applying two laser fields EL,x(t) and EL,y(t) with Rabi
frequencies ΩL,x and ΩL,y, and frequencies ωL,x and ωL,y (polarized along the x and y directions, respectively) that
exactly satisfy the Raman-resonance condition between |↓〉 and |↑〉. The laser fields are turned on for a short time
duration that satisfies a π/r-pulse condition, where r is any real number. The process can be best understood as a
Raman π/r-pulse for the hole in the conduction band state. The laser field polarizations should have non-parallel
components in order to create a non-zero Raman coupling (if there is no heavy-hole light-hole mixing). These arbitrary
single-bit rotations can naturally be carried out in parallel. In addition, the QDs that are not doped by a single electron
never couple to the Raman fields and can safely be ignored.

2. Two-qubit operations

Two-qubit operations are mediated by virtual photons that are emitted to and reabsorbed from the microcavity
field. It is assumed that the x-polarized cavity-mode with energy ωcav (~ = 1) and a laser field (assumed to be y-
polarized) establish the Raman transition between the two conduction-band states, in close analogy with the atomic
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cavity-QED schemes (Pellizzari et al., 1995). The Hamiltonian for a single QD is written as H = H0 +Hint, with

H0 =
∑

σ=↑,↓,±3/2

ωσe
†
σeσ + ωcava

†
cavacav + ωLa

†
LaL, (69)

where e↑, e↓ annihilate an electron with spin ↑, ↓ along the x direction in the conduction band and e±3/2 annihilates
an electron with spin ±3/2 along the z direction in the valence band, cf. Fig. 15 (right). The interaction can be
written as

Hint = g
(

a†+e
†
−3/2e−1/2 − a†−e

†
3/2e1/2 + h.c.

)

, (70)

where the operators for the circularly polarized light are expressed in terms of the x-polarized cavity mode and the
y-polarized laser field, a± = (acav ± iaL)/

√
2, and the conduction-band operators in the z basis can be expressed in

terms of those in the x basis, e±1/2 = (e↓±e↑)/
√

2. With ω−3/2 = ω3/2 ≡ ωv and the definition ev = (e−3/2−e3/2)/2,
the following result for the cavity Hamiltonian is obtained,

Hint = g
(

a†cave
†
ve↑ + e†↑evacav

)

− ig
(

a†Le
†
ve↓ − e†↓evaL

)

. (71)

The valence band states are eliminated by a Schrieffer-Wolff transformation (Madelung, 1978; Schrieffer and Wolff,
1966), Heff = e−SHeS , with

S =
g

∆ω↑

(

a†cave
†
ve↑ − e†↑evacav

)

− i
g

∆ω↓

(

a†Le
†
ve↓ + e†↓evaL

)

, (72)

where ∆ω↑ = ω↑−ωv−ωcav and ∆ω↓ = ω↓−ωv−ωL. Neglecting all terms O(g3) and replacing e†vev by its expectation
value 〈e†vev〉 = 1 and gaL by ΩL exp(−iωLt) one obtains the effective Hamiltonian

Heff = ωcava
†
cavacav +

∑

i

[

ωi
↑↓σ

i
↑↑ −

g2
cav

∆ωi
↑

σi
↓↓ a

†
cavacav −

(Ωi
L,y)

2

∆ωi
↓

σi
↑↑ + igi

eff

[

a†cavσ
i
↓↑e

−iωi
L,yt − h.c.

]
]

, (73)

gi
eff(t) =

gcavΩ
i
L,y(t)

2

(

1

∆ωi
↑

+
1

∆ωi
↓

)

, (74)

where the sum runs over all QDs of the system, gi
eff is the effective 2-photon coupling coefficient, σi

↑↓ = |↑〉〈↓| the

spin projection operator for the i-th QD, and ωi
↑↓ = ωi

↑ − ωi
↓. The exact two-photon-resonance condition would be

∆ωi
↑ = ωi

↑ − ωi
v − ωcav = ∆ωi

↓ = ωi
↓ − ωi

v − ωi
L. The derivation of Heff assumes ∆ωi

↑,↓ ≫ gcav, ω
i
↑↓ ≫ kBT , and

ωi,j
↑↓ ≫ gi

eff > Γcav, where Γcav denotes the cavity decay rate (not included in Eq. (73)). The third and fourth terms

of Eq. (73) describe the ac-Stark-effect caused by the cavity and laser fields, respectively.

In order to implement a CNOT quantum gate, one would turn on laser fields ωi
L and ωj

L to establish near two-photon
resonance condition for both the control (i) and the target (j) qubits,

∆i = ωi
↑↓ − ωcav + ωi

L = ∆j ≪ ωi,j
↑↓ . (75)

If the two-photon detunings ∆i are chosen large compared to the cavity linewidth and gi
eff(t), the cavity modes can

be eliminated with a second Schrieffer-Wolff transformation to obtain an effective two-qubit interaction Hamiltonian
in the rotating frame (interaction picture with H0 =

∑

i ω
i
↑↓σ

i
↑↑),

H
(2)
int =

∑

i6=j

g̃ij(t)
[

σi
↑↓σ

j
↓↑e

i∆ijt + σj
↑↓σ

i
↓↑e

−i∆ijt
]

, (76)

where g̃ij(t) = gi
eff(t)gj

eff(t)/∆i and ∆ij = ∆i − ∆j . The implementation of the conditional phase-flip (CPF) and the
CNOT or quantum XOR gates between two spins i and j from a transversal (XY) spin coupling of the form Eq. (76)
has been discussed in Sec. II.B.

The interaction Hamiltonian H
(2)
int describes the coupling of the QD spins via the following virtual process. One of

the QDs emits a virtual photon into the cavity while absorbing a laser photon. The cavity photon is then reabsorbed
by the other QD while a laser photon is emitted. Due to the spin splitting in the QD spectrum, Fig. 15 (right), this

process is spin sensitive and leads to the spin-spin coupling H
(2)
int between the QDs.
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3. Measurement

In the cavity QED scheme, measurement of a single QD spin can be achieved by applying a laser field EL,y to the
QD to be measured, in order to realize exact two-photon resonance with the cavity mode. If the QD spin is in state
|↓〉, there is no Raman coupling and no photons will be detected. If on the other hand, the spin state is |↑〉, the
electron will exchange energy with the cavity mode and eventually a single photon will be emitted from the cavity.
A single photon detection capability is thus sufficient for detecting a single spin.

4. Related proposals

A related proposal is to use optically controlled virtual excitations of delocalized excitons as mediators of RKKY
type spin interaction between electrons localized in neighboring QDs (Piermarocchi et al., 2002). The spin interaction
in this case is isotropic, H = JSi · Sj .

F. Decoherence

The spin coherence time in semiconductors—the time over which the phase of a superposition of spin-up and spin-
down states, Eq. (1), is well-defined—can be much longer than the charge coherence time (a few nanoseconds). In
fact it is known from experiment that they can be orders of magnitude longer. This is of course one of the reasons for
using spin as a qubit (Loss and DiVincenzo, 1998) rather than charge. In bulk GaAs and in CdSe quantum dots, the
ensemble spin coherence time T ⋆

2 , being a lower bound on the single-spin decoherence time T2, was measured using a
technique called time-resolved Faraday rotation (Gupta et al., 1999; Kikkawa et al., 1997). For a detailed account of
these experiments, we refer the reader to Chaps. 4 and 5 of (Awschalom et al., 2002). The spin relaxation time T1 in
a single-electron QD in a GaAs heterostructure was probed via transport measurements and found to approach one
microsecond (Hanson et al., 2004, 2003). It has been proposed to also measure the single-spin T2 in such a structure in
a transport experiment by applying electron spin resonance (ESR) techniques (Engel and Loss, 2001). In this scheme,
the stationary current exhibits a resonance whose line width is determined by the single-spin decoherence time T2.

Below, a number of decoherence mechanisms for spin in semiconductor nanostructures will be listed. It Should be
emphasized, though, that it is usually hard for theory to predict which mechanism is dominant. Nevertheless, the
understanding of the underlying mechanisms for a list of possible causes can be a very valuable tool for the purpose
of achieving long coherent operation in a future quantum device.

1. Phonons and the spin-orbit coupling

Phonon-assisted transitions between different discrete energy levels (or Zeeman sublevels) in GaAs quantum dots
can cause spin flips and therefore spin decoherence (Khaetskii, 2001; Khaetskii and Nazarov, 2000, 2001). There are
various mechanisms originating from the spin-orbit coupling which lead to such spin flip processes; the most effective
mechanisms in 2D have to do with the broken inversion symmetry, either in the elementary crystal cell or at the
heterointerface. The spin-orbit Hamiltonian for the electron in such a structure is given by Eq. (22). The relaxation
rates Γ = T−1

1 are evaluated in leading perturbation order in this coupling, with and without a magnetic field. The
spin-orbit coupling Hso mixes the spin-up and spin-down states of the electron and leads to a non-vanishing matrix
element of the phonon-assisted transition between two states with opposite spins. However, one of the main findings
of (Khaetskii, 2001; Khaetskii and Nazarov, 2000, 2001) is that the spin relaxation of the electrons localized in the
dots differs strongly from that of delocalized electrons. It turns out that in quantum dots (in contrast to extended
2D states), the contributions to the spin-flip rate proportional to β2 are absent in general. This greatly reduces
the spin-flip rates of electrons confined to dots. The finite Zeeman splitting in the energy spectrum also leads to
contributions ∝ β2,

Γ ≃ Γ0(B)

(
mβ2

~ω0

)(
gµBB

~ω0

)2

, (77)

where ~ω0 is the orbital energy level splitting in the QD and Γ0(B) is the inelastic rate without spin flip for the
transition between neighboring orbital levels.
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Spin-flip transitions between Zeeman sublevels occur with a rate that is proportional to the fifth power of the
Zeeman splitting,

Γz ≃ (gµBB)5

~(~ω0)4
Λp. (78)

The dimensionless constant Λp ∝ β2 characterizes the strength of the effective spin–piezo-phonon coupling in the
heterostructure and ranges from ≈ 7 · 10−3 to ≈ 6 · 10−2 depending on β. To give a number, Γz ≈ 1.5 · 103 s−1 for
~ω0 = 10 K and at a magnetic field B = 1 T.

It can be shown that under realistic conditions, a general symmetry argument leads to the conclusion that the spin
decoherence time T2 does not have a transverse contribution (in leading order), in other words, T2 = 2T1 for spin-orbit
(phonon) related processes (Golovach et al., 2004).

2. Nuclear spins

The nuclear spins of the host material can cause decoherence via spin flips that are caused by the hyperfine
interaction. A rough perturbative estimate of this effect (Burkard et al., 1999a) suggests that the rate of such processes
can be suppressed by either polarizing the nuclear spins or by applying an external magnetic field. The suppression
factor is (B∗

n/B)2/N , where B∗
n = AI/gµB is the maximal magnitude of the effective nuclear field (Overhauser field),

N the number of nuclear spins in the vicinity of the electron, and A the hyperfine coupling constant. In GaAs, the
nuclear spin of both Ga and As is I = 3/2. The field B denotes either the external field, or, in the absence of an
external field, the Overhauser field B = pB∗

n due to the nuclear spin polarization p, which can be obtained e.g. by
optical pumping (Dobers et al., 1988) or by spin-polarized currents at the edge of a 2DEG (Dixon et al., 1997). In
the latter case, the suppression of the spin flip rate becomes 1/p2N .

A more detailed analysis treats a single electron confined to an isolated QD under the influence of the hyperfine
interaction with the surrounding nuclei (Khaetskii et al., 2002). It turns out that the electron spin decoherence time
T2 is shorter than the nuclear spin relaxation time Tn2 determined by the dipole-dipole interaction between nuclei, and
therefore the problem can be considered in the absence of the nuclear dipole-dipole interaction. Since the hyperfine
interaction depends on the position via a factor |ψ(r)|2 where ψ(r) is the electron wavefunction, the value of the
hyperfine interaction varies spatially. It turns out that this is the relevant cause of decoherence. The analysis is
complicated by the fact that in a weak external Zeeman field (smaller than a typical fluctuating Overhauser field seen
by the electron, ∼ 100 Gauss in a GaAs QD), the perturbative treatment of the electron spin decoherence breaks
down and the decay of the spin precession amplitude is not exponential in time, but either described by a power law,
1/td/2 (for finite Zeeman fields) or an inverse logarithm, 1/(ln t)d/2 (for vanishing fields).

The decay rate 1/T2 is thus roughly given by A/~N , where A is the hyperfine interaction constant, and N is the
number of nuclei within the dot, with N typically 105. This time is of the order of several µs. However, it needs
to be stressed that there is no simple exponential decay which, strictly speaking, means that decoherence cannot
simply be characterized by the decay times T1 and T2 in this case. The case of a fully polarized nuclear spin state
was solved exactly in (Khaetskii et al., 2002). The amplitude of the precession which is approached after the decay, is
of order one, while the decaying part is 1/N , in agreement with earlier results (Burkard et al., 1999a), see above. A
large difference between the values of T2 (decoherence time for a single dot) and T ⋆

2 (dephasing time for an ensemble
of dots), i.e. T ⋆

2 ≪ T2 is found and indicates that it is desirable to have direct experimental access to single spin
decoherence times.

The non-Markovian dynamics of a localized electron spin interacting with an environment of nuclear spins with
arbitrary polarization p was calculated in (Coish and Loss, 2004) from a perturbative analysis of the generalized
master equation for the longitudinal and transverse components of the electron spin.

IV. SUPERCONDUCTING MICRO-CIRCUITS

A. Overview

Roughly speaking, three prototypes of superconducting (SC) qubits are studied experimentally. We only briefly
review them here, and refer the reader to (Makhlin et al., 2001) for a comprehensive review. The charge qubit
(Averin, 1998; Makhlin et al., 1999; Nakamura et al., 1999; Pashkin et al., 2003; Shnirman et al., 1997; Vion et al.,
2002), operating in the regime EC ≫ EJ , and the flux qubit (Chiorescu et al., 2003; Mooij et al., 1999; Orlando et al.,
1999; van der Wal et al., 2000), operating in the regime EJ ≫ EC , are distinguished by their Josephson junctions’
relative magnitude of charging energy EC and Josephson energy EJ . A third type, the phase qubit (Ioffe et al., 1999;
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Martinis et al., 2002), operates in the same regime as the flux qubit, but is represented purely in the SC phase and is
not associated with any magnetic flux or circulating current. The Josephson phase qubit consists of a single Josephson
junction (Martinis et al., 2002). In flux qubits, the quantum state of the SC phase differences across the Josephson
junctions in the circuit contain the quantum information, i.e., the state of the qubit. A micrograph of the circuit for
a SC flux qubit studied in (Chiorescu et al., 2003) is shown in Fig. 16. In charge qubits, the quantum state of the
charge on SC islands contains the quantum information.

Both charge and flux qubits have been described by an approximate pseudo-spin Hamiltonian of the type
(Makhlin et al., 2001),

H =
∆

2
σx +

ǫ

2
σz, (79)

where ∆ denotes the tunnel coupling between the two qubit states |0〉 and |1〉 (eigenstates of σz) and ǫ the bias
(asymmetry). In Sec. IV.C, a more general model, including the full Hilbert space of a SC circuit, will be discussed.

B. Decoherence, visibility, and leakage

1. Decoherence

Decoherence within the model Eq. (79) can be understood phenomenologically as follows. If the qubit is initially

prepared in state |1〉, then it will undergo free Larmor oscillations with frequency ν = h−1
√

∆2 + ǫ2. Ideally, the
probability for finding the qubit in state |1〉 after time t would be a perfect cosine function of t. This ideal Larmor
precession is shown as a thin dotted line in Fig. 17. Such a Larmor precession experiment (also known as Ramsey
fringe experiment) determines how well the qubit satisfies item I.A.3 of DiVincenzo’s five criteria. Decoherence is a
process in which the amplitude of the oscillations decays over time, as shown by the thick solid line in Fig. 17. This
decay is often (but not always) exponential with a characteristic decoherence time T2.

All types of SC qubits suffer from decoherence that is caused by a several sources. Decoherence in charge qubits has
been investigated using the spin-boson model in (Makhlin et al., 2001; Makhlin and Shnirman, 2004). In flux qubits,
the Johnson-Nyquist noise from lossy circuit elements (e.g., current sources) has been identified as one important
cause of decoherence (Tian et al., 2000, 2002; van der Wal et al., 2003; Wilhelm et al., 2003). A systematic theory of
decoherence of a qubit from such dissipative elements, based on the network graph analysis (Devoret, 1997) of the
underlying SC circuit, was developed for SC flux qubits (Burkard et al., 2004b), and applied to study the effect of
asymmetries in a persistent-current qubit (Burkard et al., 2004a). The circuit theory for SC qubits will be discussed
further below in Sec. IV.C. For the Josephson phase qubit (Martinis et al., 2002), decoherence due to bias noise and
junction resonators was studied in (Martinis et al., 2003; Simmonds et al., 2004).

2. Visibility

A different type of imperfection that typically affects SC qubits is a limited visibility v. This effect means that the
maximum range v of the read-out probability of the qubit being in state |1〉 is smaller than one. This means, e.g.,
that the probability p(0) of measuring the qubit in state |1〉 right after preparation in this state is less than one. In
the case of a symmetric reduction of the visibility, the relation is p(0) = (1 + v)/2. This effect is schematically shown
in Fig. 17.

FIG. 16 Electron micrograph of the SC flux qubit circuit
studied in (Chiorescu et al., 2003). The logical qubit ba-
sis states correspond to circulating SC currents in the
smaller loop as indicated. The bright areas are the Al
wires; the double-layer structure from the shadow evap-
oration deposition is clearly visible. (Figure courtesy of
I. Chiorescu and J. E. Mooij, TU Delft).
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FIG. 17 Theoretical Larmor precession (Ramsey
fringe) curve with decoherence time T2 < ∞ and
limited visibility v < 1 (solid thick line), compared
to the ideal curve (dotted thin line). The proba-
bility p(t) to find the qubit in state |1〉 is plotted
as a function of the free evolution time t. The
Larmor frequency of the coherent oscillations is
denoted with ν. The visibility v is the maximum
range of p(0) whereas the decoherence time T2 is
the time over which the oscillations are damped
out (in the case of an exponential decay). For this
plot, we have chosen T2 = 20/ν and v = 70%.

3. Leakage

Limitations of the visibility are often attributed to a mechanism called leakage. Since the SC phase is a continuous
variable as, e.g., the position of a particle, superconducting qubits (two-level systems) have to be obtained by trunca-
tion of an infinite-dimensional Hilbert space. This truncation is only approximate for various reasons; (i) because it
may not be possible to prepare the initial state with perfect fidelity in the lowest two states, (ii) because of erroneous
transitions to higher levels (leakage effects) due to imperfect gate operations on the system, and (iii) because of erro-
neous transitions to higher levels due to the unavoidable interaction of the system with the environment. Apparent
leakage effects may occur if the read-out process is not 100% accurate. Leakage effects due to the non-adiabaticity of
externally applied fields were studied in (Fazio et al., 1999). Recent work (Meier and Loss, 2004) shows that leakage
in microwave-driven Josephson phase qubits leading to a reduced visibility can occur, even if the microwave source is
pulsed slowly.

C. Circuit theory

A recently developed method for deriving the Hamiltonian of SC circuits from their classical dynamics, combined
with the theory of dissipative quantum systems, can be utilized to describe decoherence in arbitrary SC circuits
(Burkard et al., 2004b).

There exists a variety of theoretical models for dissipative environments in general, and dissipative electrical cir-
cuit elements (impedances) in particular. A dissipative (resistive) element can be modeled as a transmission line
(Werner and Drummond, 1991; Yurke, 1987; Yurke and Denker, 1994), i.e. an infinite set of dissipation-free elements
(capacitors and inductors), or, alternatively, within the widely known Caldeira-Leggett model (Caldeira and Leggett,
1983; Leggett et al., 1987; Weiss, 1999) as a continuum of harmonic oscillators that is coupled to the degrees of
freedom of the system (in this case, the SC circuit). In the following, the Caldeira-Legget approach will be used.

The systematic derivation of the dynamical equations for a general (classical) electric circuit is a well-known problem
in electric engineering that has been tackled using the elegant and convenient network graph analysis methods (Peikari,
1974). It has been suggested early on that these methods may also be used for a description of the dissipative quantum
dynamics of superconducting circuits (Devoret, 1997). We shall now explain the circuit graph analysis applied to SC
qubits, both of the flux (Sec.IV.D) and charge (Sec.IV.E) type.

D. Flux qubits

In this Section, the results of the circuit theory for flux qubits are presented; for a derivation, see (Burkard et al.,
2004b). The IBM qubit (Koch et al., 2003) will be used as a first example, and then followed by other examples. The
IBM qubit is described by the electrical circuit drawn in Fig. 18.
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1. The network graph

As a first step in the circuit analysis of a SC flux qubit, the network graph of the SC circuit is drawn and labeled. In
the graph, each two-terminal element (Josephson junction, capacitor, inductor, external impedance, current source)
is represented as a branch connecting two nodes. In Fig. 18 (left panel), the IBM qubit is represented as a network
graph, where thick lines are used as a shorthand for resistively shunted Josephson junctions, or RSJ (see Fig. 18,
right panel). A convention for the direction of all branches has to be chosen–in Fig. 18, the direction of branches is
represented by an arrow.

2. The tree of the network graph

As a second step, a tree of the network graph needs to be specified. A tree of a graph is a set of branches connecting
all nodes without containing any loops. Here, the tree is chosen such that it contains all capacitors, as few inductors
as possible, and neither resistors (external impedances) nor current sources. The conditions under which such a choice
can be made are discussed in (Burkard et al., 2004b). The tree of Fig. 18(right) that will be used here is shown in
Fig. 18(center). The branches in the tree are called tree branches ; all other branches are called chords. Each chord is
associated with exactly one so-called fundamental loop that is obtained when adding the chord to the tree.

3. The loop matrices

In a next step, the loop sub-matrices FCL, FCZ , FCB, FKL, FKZ , and FKB need to be found. The loop sub-
matrices FXY have entries +1, −1, or 0, and hold the information about which tree branches of type X belong to
which fundamental loop associated with the chords of type Y . E.g., for our example,

FCL =






1 0

−1 1

0 −1




 , (80)

where the first column determines that the capacitor C1 (part of J1) belongs to the large loop (associated with L1),
capacitor C2 (part of J2) belongs to the large loop (with different orientation), while capacitor C3 (part of J3) does
not belong to the large loop at all. Similarly, the second column of FCL says which of the capacitors are contained in
the small loop (associated with L3).

The loop matrices have the purpose of systematically incorporating Kirchhoff’s laws of current and energy conser-
vation in the circuit,

F(C)I = (11 |F) I = 0, (81)

F(L)V =
(
−FT | 11

)
V = Φ̇, (82)

J1

J3 J2

K2

K4

IB

Z

L3

L1

C1

C2C3

K2

K4

Ic,iJ i

Ri Ci

=

FIG. 18 Left: The IBM qubit is an example of a network graph. Each thick line represents a Josephson element, i.e. three
branches in parallel, see right panel. Thin lines represent simple two-terminal elements, such as linear inductors (L, K), external
impedances (Z), and current sources (IB). Center: A Josephson subgraph (thick line) consists of three branches; a Josephson
junction (cross), a shunt capacitor (C), a shunt resistor (R), and no extra nodes. Right: A tree for the circuit shown on the
right. A tree is a subgraph containing all nodes and no loop. Here, a tree was chosen that contains all capacitors (C), some
inductors (K), but no current sources (IB) or external impedances (Z).



31

where the external magnetic fluxes are denoted with Φ, and where the loop sub-submatrices

F =

(

FCJ FCL FCR FCZ FCB

FKJ FKL FKR FKZ FKB

)

(83)

are related to the full fundamental loop and cutset matrices F(L) and F(C) via the grouping of the branch currents
and voltages into a tree and a chord part, I = (Itr, Ich) and V = (Vtr,Vch).

4. Current-voltage relations (CVRs)

In order to derive the equations of motion and eventually, the Hamiltonian of the SC circuit, Kirchhoff’s laws,
Eqs. (81) and (82) need to be combined with the CVRs of the various branch elements. For this purpose, the tree
and chord currents and voltages are divided up further, according to the various branch types, Itr = (IC , IK), and
Ich = (IJ , IL, IR, IZ , IB), and similarly for the voltages. The tree current and voltage vectors contain a capacitor (C)
and tree inductor (K) part, whereas the chord current and voltage vectors consist of parts for chord inductors, both
non-linear (J) and linear (L), shunt resistors (R) and other external impedances (Z), and bias current sources (B).
The branch charges and fluxes (X = C,K, J, L,R, Z,B) are formally defined as

IX(t) = Q̇X(t), (84)

VX(t) = Φ̇X(t). (85)

Using the second Josephson relation and Eq. (85), we identify the formal fluxes associated with the Josephson junctions
as the superconducting phase differences ϕ across the junctions,

ΦJ

Φ0
=

ϕ

2π
, (86)

where Φ0 = h/2e is the superconducting flux quantum. Each branch type has its own current-voltage relation (CVR);
e.g., the Josephson junction branches follow the first Josephson relation,

IJ = Ic sinϕ, (87)

with the critical current matrix Ic, while the external impedances are described by the integral relation,

VZ(t) =

∫ t

−∞

Z(t− τ)IZ(τ)dτ ≡ (Z ∗ IZ)(t). (88)

The total inductance matrix

Lt =

(

L LLK

LT
LK LK

)

, (89)

is used for the CVR of the chord (L) and tree (K) inductances,
(

ΦL

ΦK

)

= Lt

(

IL

IK

)

, (90)

where L and LK are the self inductances of the chord and tree branch inductors, resp., off-diagonal elements describing
the mutual inductances among chord inductors and tree inductors separately, and LLK is the mutual inductance matrix
between tree and chord inductors.

5. The Hamiltonian

The elements described above are sufficient to determine the Hamiltonian of the dissipation-free system,

HS =
1

2
QT

CC−1QC +

(
Φ0

2π

)2

U(ϕ), (91)

U(ϕ) = −
∑

i

2πIc;i
Φ0

cosϕi +
1

2
ϕTM0ϕ +

2π

Φ0
ϕT (NΦx + SIB) , (92)
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where QC are the charges conjugate to the fluxes ΦJ = (Φ0/2π)ϕ and C is the capacitance matrix of the circuit.
The matrices M0, N, and S are obtained from the inductance and loop matrices Lt and F (Burkard et al., 2004b).
The Hamiltonian Eq. (91) is quantized using the commutator relation

[
Φ0

2π
ϕi, QC;j

]

= i~δij . (93)

The system including dissipation can be described using the Caldeita-Legget model,

H = HS + HB + HSB , (94)

HB =
1

2

∑

α

(
p2

α

mα
+mαω

2
αx

2
α

)

, (95)

HSB = m · ϕ
∑

α

cαxα + ∆U(ϕ), (96)

where HS is the quantized Hamiltonian Eq. (91), HB is the Hamiltonian describing a bath of harmonic oscillators with
(fictitious) position and momentum operators xα and pα with [xα, pβ] = i~δαβ, masses mα, and oscillator frequencies
ωα. Finally, HSB describes the coupling between the system and bath degrees of freedom, ϕ and xα, where cα is a
coupling parameter and m are obtained from the inductance and loop matrices Lt and F (Burkard et al., 2004b).

The quantum dynamics of the entire system (qubit plus bath of oscillators) is described by the Liouville equation
ρ̇(t) = −i[H, ρ(t)] ≡ −iLρ(t) for the density matrix ρ. The state of the system alone is described by the reduced
density matrix ρS(t) = TrB ρ(t). In the Born-Markov approximation, the master equation for ρS(t) can be written in
the form of the Redfield equations (Redfield, 1957),

ρ̇nm(t) = −iωnmρnm(t) −
∑

kl

Rnmklρkl(t), (97)

where ρnm = 〈n|ρS |m〉 are the matrix elements of ρ in the eigenbasis |n〉 of HS (eigenenergies ωn), and ωnm = ωn−ωm,
and with the Redfield tensor,

Rnmkl = δlm
∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
lrrm − Γ

(+)
lmnk − Γ

(−)
lmnk, (98)

ReΓ
(+)
lmnk = (m · ϕ)lm(m · ϕ)nkJ(|ωnk|)

e−βωnk/2

sinhβ|ωnk|/2
,

ImΓ
(+)
lmnk = −(m · ϕ)lm(m · ϕ)nk

2

π
P

∫ ∞

0

dω
J(ω)

ω2−ω2
nk

(

ω−ωnk coth
βω

2

)

. (99)

In the two-dimensional qubit subspace, the Bloch vector p = Tr(σρ) can be introduced where σ = (σx, σy , σz) are
the Pauli matrices, and the Redfield equation (97) takes the form of the Bloch equation ṗ = ω × p −Rp + p0, with
ω = (0, 0, ω01)

T , where in the secular approximation, the relaxation matrix R is diagonal, R = diag(T−1
2 , T−1

2 , T−1
1 ).

The relaxation and decoherence times T1 and T2 are then given by

1

T1
= 4|〈0|m · ϕ|1〉|2J(ω01) coth

ω01

2kBT
, (100)

1

T2
=

1

2T1
+

1

Tφ
, (101)

1

Tφ
= |〈0|m · ϕ|0〉 − 〈1|m · ϕ|1〉|2 J(ω)

ω

∣
∣
∣
∣
ω→0

2kBT. (102)

In the semiclassical approximotion, T1 and Tφ can be related to the parameters ∆ and ǫ in the Hamiltonian Eq. (79),

1

T1
=

(
∆

ω01

)2

|∆ϕ ·m|2 J(ω01) coth
ω01

2kBT
, (103)

1

Tφ
=

(
ǫ

ω01

)2

|∆ϕ ·m|2 J(ω)

ω

∣
∣
∣
∣
ω→0

2kBT. (104)
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FIG. 19 Schematic of the Delft circuit, Fig. 16, where the
crosses denote Josephson junctions. The outer loop with two
junctions L and R forms a dc SQUID that is used to read out
the qubit. The state of the qubit is determined by the orienta-
tion of the circulating current in the small loop, comprising the
junctions 1, 2, and 3, one of which has a slightly smaller critical
current than the others. A bias current IB can be applied as
indicated for read-out.

6. Leakage

The leakage rate from a qubit state k = 0, 1 into higher levels n = 2, 3, . . . outside the qubit space can be quantified
from the Redfield equation Eq. (97) by the sum

1

TL,k
= 4

∑

n

|〈n|m · ϕ|k〉|2J(ωkn) coth
ωkn

2kBT
. (105)

7. The Delft qubit

A very successful qubit design is the Delft qubit (Chiorescu et al., 2003) which is depicted in Fig. 16, and which
will be discussed in this Section. A schematical drawing of the SC circuit for the Delft qubit is shown in Fig. 19.
This design is intended to be immune to current fluctuations in the current bias IB due to its symmetry properties;
at zero dc bias, IB = 0, and independent of the applied magnetic field, a small fluctuating current δIB(t) caused by
the finite impedance of the external control circuit (the current source) is divided equally into the two arms of the
SQUID loop and no net current flows through the three-junction qubit line. Hence, in the ideal circuit (Fig. 19) the
qubit is protected from decoherence due to current fluctuations in the bias current line. However, asymmetries in the
SQUID loop may spoil the protection of the qubit from decoherence. In the case of an inductively coupled SQUID
(Mooij et al., 1999; Orlando et al., 1999; van der Wal et al., 2000) neither a small geometrical asymmetry (imbalance
of self- and mutual inductances in the SQUID loop), nor thejunction (critical current) asymmetry of typically a few
percent, would suffice to cause a relevant amount of decoherence at zero bias current IB = 0 (Burkard et al., 2004b).
What turns out to be important here is that the circuit (Fig. 16) contains another asymmetry, caused by its double

layer structure, being an artifact of the fabrication method used to produce SC circuits with aluminum/aluminum
oxide Josephson junctions, the so-called shadow evaporation technique. Junctions produced with this technique will
always connect the top layer with the bottom layer, see Fig. 20.

Thus, while circuits like Fig. 19 can be produced with this technique, strictly speaking, loops will always contain an
even number of junctions. In order to analyze the implications of the double layer structure for the circuit in Fig. 19,
the circuit is drawn again in Fig. 21(a) with separate upper and lower layers. Note that each piece of the upper layer
is connected with the underlying piece of the lower layer via an “unintentional” Josephson junction.

These extra junctions typically have large areas and therefore large critical currents; thus, their Josephson energy
can often be neglected. In order to study the lowest-order effect of the double layer structure, one can neglect all
unintentional junctions in this sense and arrive at the circuit Fig. 21(b). It should be emphasized that the resulting
circuit is distinct from the ’ideal’ circuit Fig. 19 which does not reflect the double-layer structure. In the real circuit,
Fig. 21(b), the symmetry between the two arms of the dc SQUID is broken, and thus it can be expected that bias
current fluctuations cause decoherence of the qubit at zero dc bias current, IB = 0.

Starting from the circuit graph of the Delft qubit, the circuit theory can be used to find the Hamiltonian of the
circuit, which can subsequently be analyzed numerically. The double-well minima ϕ0 and ϕ1 was found for a range of
bias currents and applied external flux. The states localized at ϕ0 and ϕ1 are encoding the logical |0〉 and |1〉 states of
the qubit. Two special lines in the plane spanned by the bias currents and applied external flux can now be determined,
see Fig. 23. (i) The line f∗(IB) on which a symmetric double well is predicted, ǫ ≡ U(ϕ0)−U(ϕ1) = 0. On this line,
the dephasing time Tφ diverges. (ii) The line on which m · ∆ϕ = 0, where ∆ϕ = ϕ0ϕ1 is the vector joining the two
minima of the potential. On this line, the environment is decoupled from the system, and both the relaxation and

. . . 
FIG. 20 Schematics of Josephson junctions produced by the
shadow evaporation technique, connecting the upper with the
lower aluminum layer. Shaded regions represent the aluminum
oxide.
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(b)

(a)

. . . . . . FIG. 21 (a) Double layer structure. Dashed blue lines repre-
sent the lower, solid red lines the upper SC layer, and crosses
indicate Josephson junctions. The thick crosses are the intended
junctions, while the thin crosses are the unintended distributed
junctions due to the double-layer structure. (b) Simplest circuit
model of the double layer structure. The symmetry between
the upper and lower arms of the SQUID has been broken by
the qubit line comprising three junctions. Thick black lines de-
note pieces of the SC in which the upper and lower layer are
connected by large area junctions.

Csh
ΙΒ

Lsh

ZB ω(   )qubit
& SQUID

FIG. 22 External circuit attached to the qubit (Fig. 19) that
allows the application of a bias current IB for qubit read-out.
The inductance Lsh and capacitance Csh form the shell circuit,
and Z(ω) is the total impedance of the current source (IB). The
case where a voltage source is used to generate a current can be
reduced to this using Norton’s theorem.

the decoherence times diverge, T1,2,φ → ∞. The curve f∗(IB) agrees qualitatively with the experimentally measured
symmetry line (Bertet et al., 2004), but it underestimates the magnitude of the variation in flux f ′ as a function of
IB . The point where the symmetric and the decoupling lines intersect coincides with the maximum of the symmetric
line, as can be understood from the following argument. Taking the total derivative with respect to IB of the relation
ǫ = U(ϕ0; f

∗(IB), IB) − U(ϕ1; f
∗(IB), IB) = 0 on the symmetric line, and using that ϕ0,1 are extremal points of U ,

we obtain n ·∆ϕ∂f∗/∂IB + (2π/Φ0)m ·∆ϕ = 0 for some constant vector n. Therefore, m ·∆ϕ = 0 (decoupling line)
and n · ∆ϕ 6= 0 implies ∂f∗/∂IB = 0.

The relaxation and decoherence times T1 and T2 on the symmetric line have been evaluated and are plotted (Fig. 23,
right) where ǫ = 0, and therefore, E = ∆. The divergence in Tφ on the symmetric line is cut off by higher-order
effects, whereas the divergence of T1 on the decoupling line is cut off by residual impedances, e.g., due to the junctions’
quasiparticle resistance (Burkard et al., 2004a). A peak in the relaxation and decoherence times where predicted from� = 0m � �' = 0

IB [�A℄
f0 =2� 43210

1.351.341.33 T�T2T1
IB [�A℄

T[ns℄ 43210
100500

FIG. 23 Left: Decoupling (red solid) and symmetric (blue dashed) curves in the (IB, f ′) plane, where IB is the applied bias
current and f ′ = 2πΦ′

x/Φ0 is the dimensionless externally applied magnetic flux threading the SQUID loop. Both curves are
obtained from the numerical minimization of the potential Eq. (92). The decoupling line is determined using the condition
m ·∆ϕ = 0, whereas the symmetric line follows from the condiction ǫ = 0. Right: Theoretical relaxation, pure dephasing, and
decoherence times T1, Tφ, and T2 as a function of applied bias current IB , along the symmetric line (Fig. 23, left).
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IB [�A℄
! sh 2�[GHz℄ 43210

32.952.92.852.8 IB [�A℄
�[MHz℄ 43210-200-100

2001000
FIG. 24 Left: Plasma frequency ωsh as a function of the applied bias current IB. The variation is due to the change the
effective in Josephson inductances as IB is varied. Right: Rabi frequency of the coupling between the qubit and the plasmon
mode. The coupling disappears at the crossing with the decoupling line (Fig. 23), i.e., when m · ∆ϕ = 0.

theory can be observed experimentally (Bertet et al., 2004).
The symmetry breaking due to the double layer structure has another, very interesting, consequence. It causes a

coupling between the qubit and an external harmonic oscillator, the plasmon mode formed by LC resonator in the
SQUID (Fig. 22). This coupling can be observed as resonances in the microwave spectrum of the system. Moreover,
it can be used to entangle the qubit with another degree of freedom (Chiorescu et al., 2004). Here, the inductance Lsh

and capacitance Csh of the “shell” circuit (plasmon mode) are responsible for this resonator. This coupling has been
studied quantitatively in the framework of the circuit theory. From the full Hamiltonian HS , a two-level Hamiltonian
in the well-known Jaynes-Cummings form can be derived,

H = ∆σx + ǫσz + ~ωsh

(

b†b+
1

2

)

+ λσz(b+ b†), (106)

with the coupling parameter (Rabi frequency)

λ = −
√
π

(
Φ0

2π

)2
√

Zsh

RQ

1

Msh
m · ∆ϕ. (107)

Note that this coupling vanishes along the decoupling line (Fig. 23, left) and also rapidly with the increase of Lsh.
The Rabi frequency at IB = 0 is predicted to be λ ≈ 210 MHz. The Rabi frequency as a function of the bias current
IB , together with the plasma frequency, is plotted in Fig. 24. Strong coupling between a charge qubit and a quantum
electromagnetic cavity formed by a SC transmission line has been observed in (Wallraff et al., 2004).

E. Charge qubits

In analogy to the circuit theory for flux qubits, a general circuit theory for charge qubits will be outlined and
illustrated with examples in this Section (Burkard, 2004). As in the case of the circuit theory for flux qubits, we are
not restricted to a Hilbert space of the SC device which is a priori truncated to two levels only. The role of the self
and mutual inductances in SC charge qubits have been previously studied (You et al., 2001), in particular as a means
of coupling two SC charge qubits (Makhlin et al., 2001; Makhlin and Shnirman, 2004). Here, the self and mutual
inductances in the underlying SC circuit are fully taken into account.

1. Graph theory

Note that the circuit theory for charge qubits is dual to that for flux qubits in the sense that the roles of chord and
tree branches are interchanged,

Itr = (IJ , IL, IV , IZ), Ich = (ICJ
, IC , IK), (108)

Vtr = (VJ ,VL,VV ,VZ), Vch = (VCJ
,VC ,VK). (109)
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The loop matrix F now acquires the block form,

F =








11 FJC FJK

0 FLC FLK

0 FV C FV K

0 FZC FZK







. (110)

The Hamiltonian has the form

HS =
1

2
(Q− CV V)T C−1 (Q − CV V) + U(Φ), (111)

with the potential

U(Φ) = −L−1
J sinϕ +

1

2
ΦTM0Φ + ΦT NΦx, (112)

where the Josephson and inductor flux variables are combined in Φ = (ϕ,ΦL), with the vector operator of conjugate
charges denoted by Q. The coupling Hamiltonian in a Caldeira-Leggett description H = HS + HB +HSB now takes
the form

HSB = C−1m̄ · Q
∑

α

cαxα = m̄ · C−1Q
∑

α

cαxα, (113)

where C is the total capacitance matric of the circuit. The resulting Redfield equation takes the form Eq. (97) and
Eq. (98), but with

ReΓ
(+)
lmnk =

1

~
(m ·Q)lm(m ·Q)nkJ(|ωnk|)

e−~βωnk/2

sinh ~β|ωnk|/2
,

ImΓ
(+)
lmnk = −1

~
(m · Q)lm(m · Q)nk

2

π
P

∫ ∞

0

dω
J(ω)

ω2−ω2
nk

(

ω−ωnk coth
~βω

2

)

, (114)

and with m = C−1m̄. Finally, the relaxation and decoherence times in a two-level description reduce to

1

T1
=

4

~
|〈0|m · Q|1〉|2J(ω01) coth

~ω01

2kBT
, (115)

1

T2
=

1

2T1
+

1

Tφ
, (116)

1

Tφ
=

1

~
|〈0|m · Q|0〉 − 〈1|m ·Q|1〉|2 J(ω)

~ω

∣
∣
∣
∣
ω→0

2kBT. (117)

In the semiclassical limit, one finds

1

T1
=

1

~
|m · ∆Q|2

(
∆

ω01

)2

J(ω01) coth
~ω01

2kBT
, (118)

1

Tφ
=

1

~
|m · ∆Q|2

(
ǫ

ω01

)2
J(ω)

~ω

∣
∣
∣
∣
ω→0

2kBT. (119)

The leakage rates from the logical state k = 0, 1 to states n = 2, 3, . . . outside the computational subspace can be
estimated as

1

TL
=

4

~

∞∑

n=2

|〈k|m · Q|n〉|2J(ωnk) coth
~ωnk

2kBT
. (120)

2. Single charge box

We now illustrate the circuit theory for charge qubits with some examples. The first example is the voltage-biased
charge box, shown in Fig. 25. The inductance of the leads has been neglected for simplicity (no L and K branches).
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Cg

CJEJZ

V

FIG. 25 Circuit graph of a single voltage-biased charge box.
Branches represent a Josephson junction (EJ), capacitances (CJ

and Cg), a voltage source V , and the impedance Z. The nodes
are shown as black dots; the node connecting the junction (EJ)
to the gate capacitance Cg represents the SC island.

CJ2EJ2EJ1CJ1

Φ

L

FIG. 26 A flux-controlled Josephson junction.

The tree of the graph is given by the Josephson, voltage source, and impedance branches. For the loop matrices, we
simply find FJC = FV C = FZC = 1. With the capacitances C ≡ Ctot = CJ + Cg and CV = Cg, we arrive at the
Hamiltonian,

HS =
(QJ + CgV )2

2Ctot
+ EJ cosϕ. (121)

The coupling to the environment is characterized by m = (Cg/Ctot). As an example, we give here the relaxation and
dephasing times, with m = |m| = Cg/Ctot,

1

T1
= 2πm24|〈0|n|1〉|2 4ReZ(ω01)

RQ
ω01 coth

~ω01

2kBT
, (122)

1

Tφ
= 2πm2|〈0|n|0〉 − 〈1|n|1〉|2 4ReZ(0)

RQ

2kBT

~
, (123)

where n = Q/2e and RQ = h/e2. In the semiclassical limit, 〈0|n|1〉 ≈ (1/2)(∆/ω01)∆n and 〈0|n|0〉 − 〈1|n|1〉 ≈
(ǫ/ω01)∆n. With ∆n ≈ 1, we reproduce the results in (Makhlin et al., 2001). Typical leakage rates are of the form
of 1/T1, with the matrix element replaced by |〈0|n|k〉| and |〈1|n|k〉|, where k ≥ 2 labels a state other than the two
qubit states, and with ω01 replaced by ωlk (l = 0, 1).

3. Flux-controlled Josephson junction

. A flux-controlled Josephson junction is a SC loop with two junctions which acts as an effective Josephson junction
with a flux-dependent Josephson energy (Makhlin et al., 1999). The circuit Fig. 26 we use to describe the the flux-
controlled junction comprises a chord inductance (K) with inductance L. The tree consists of the two Josephson

branches. The only relevant loop matrix is FJK =
(

1 −1
)T

. In the limit L → 0, and if EJ1 = EJ2, we find

FT
JKϕ + Φx = ϕ1 − ϕ2 + Φ → 0, which leads us to the Hamiltonian

HS =
Q2

2C̄
− EJ (Φ) cosϕ, (124)

where ϕ = ϕ1 + πΦ/Φ0, C̄ = CJ1 + CJ2, and EJ (Φ) = 2EJ cos(2πΦ/Φ0).
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FIG. 27 Two inductively coupled charge boxes.

4. Inductively coupled charge boxes

We now turn to the case of two charge boxes of the type discussed in Sec. IV.E.2, coupled via an inductive loop
(Makhlin et al., 1999, 2001), as shown in Fig. 27. Here, the tree consists of all Josephson, voltage source, and
impedance branches, plus the inductive branch L, and the loop matrices are

FJC = FV C = FZC =

(

1 0

0 1

)

, FLC =
(

1 1
)

. (125)

With the two capacitance matrices C = diag(C1, C2) and CJ = diag(CJ1, CJ2), we find Ctot = C + CJ , CJV = C,

CJL = CT
LV = (C1, C2)

T , and CL = C1 +C2. The vector m̄ consists of the two parts mJ = C and mL =
(

C1 C2

)

.

With Eq. (111) and the inverse of the total capacitance matrix,

C−1 =
1

γ






(C1 + C2)CJ2 − C2
2 C1C2 −C1CJ2

C1C2 (C1 + C2)CJ1 − C2
1 −C2CJ1

−C1CJ2 −C2CJ1 CJ1CJ2




 ≡






C−1
eff,1 C−1

eff,12 C−1
eff,L1

C−1
eff,12 C−1

eff,2 C−1
eff,L2

C−1
eff,L1 C−1

eff,L2 C−1
eff,L




 , (126)

where γ = (C1 + C2)CJ1CJ2 − C2
1CJ2 − C2

2CJ1, the Hamiltonian of the coupled system can be written as,

HS =
∑

i=1,2

(
(QJi + CiVi)

2

2Ceff,i
+ EJi cosϕi

)

+
(QL + C1V1 + C2V2)

2

2Ceff,L
+

Φ2
L

2L
(127)

+
(QJ1 + C1V1)(QJ2 + C2V2)

Ceff,12
−
∑

i=1,2

(QJi + CiVi)(QL + C1V1 + C2V2)

Ceff,Li
.

While the last term in Eq. (127) couples each qubit to the LC mode associated with the inductor L, and is thus
responsible for the inductive coupling of the qubits, the second last term provides a direct capacitive coupling between
the qubits. In the limit Ci ≪ CJi, we reproduce the results of (Makhlin et al., 2001); however, there are additional
terms of order Ci/CJi, in particular the new term ∝ 1/Ceff,12 in the Hamiltonian that capacitively couples the qubits
directly. Since the coupled system involves at least four levels (more if excited states of the LC coupling circuit or
higher qubit levels are included), it can no longer be described by a two-level Bloch equation with parameters T1 and
T2. We can however fix one of the qubits to be in a particular state, say |0〉, and then look at the “decoherence rates”
of the other qubit. To lowest order in Ci/CJi, these rates due to the impedance Zi have the form (qi = Ci/(C1 +C2))

1

T1
= 2πq2i 4|〈00|nL|10〉|2 4ReZi(ω01)

RQ
ω01 coth

~ω01

2kBT
, (128)

1

Tφ
= 2πq2i |〈00|nL|00〉 − 〈10|nL|10〉|2 4ReZi(0)

RQ

2kBT

~
. (129)
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F. Multiple sources of decoherence

In this Section, we show that the total decoherence and relaxation rates of a quantum system in the presence of
several decoherence sources are not necessarily the sums of the rates due to each of the mechanisms separately, and
that the corrections to additivity (mixing terms) can have both signs (Burkard and Brito, 2004). To this end, we
investigate the decoherence due to several sources in superconducting (SC) flux qubits; the general idea of the present
analysis may however be applied to other systems as well.

1. Dissipative dynamics

As an example, the gradiometer qubit drawn in Fig. 28 with n = 3 junctions will be discussed. The gradiometer
qubit is controlled by applying a magnetic flux Φc to the small loop on the left by driving a current IB1 in a coil
next to it, and simultaneously by applying a magnetic flux Φ on one side of the gradiometer using IB2. The classical
equations of motion of the SC circuit have the form

Cϕ̈ = −∂U
∂ϕ

− M ∗ ϕ, (130)

where C is the capacitance matrix, U the potential, and M(t) the dissipation matrix. The convolution is defined as

(f ∗g)(t) =
∫ t

−∞ f(t−τ)g(τ)dτ . The dissipation matrix in the Fourier representation can be found from circuit theory

(Burkard et al., 2004b) and has the form

M(ω) = m̄L̄Z(ω)−1m̄T = m̄ (LZ(ω) + Lc)
−1

m̄T , (131)

where m̄ and Lc denote real matrices that can be obtained from the circuit inductances. One can assume the matrices
Z and LZ to be diagonal because the impedances Zi are independent.

A Caldeira-Leggett Hamiltonian H = HS +HB +HSB can be constructed that reproduces the classical dissipative
equation of motion, Eq. (130), and that is composed of parts for the system (S), given in Eq. (91), for m ≥ 1 harmonic
oscillator baths (B), and for the system-bath (SB) coupling,

HB =

m∑

j=1

∑

α

(

p2
αj

2mαj
+

1

2
mαjω

2
αjx

2
αj

)

, (132)

HSB =
∑

α

ϕT cαxα, (133)

where xα = (xα1, . . . , xαm), and cα is a real n × m matrix. Defining the matrix spectral density J(ω) of the
environment, where δij(X) ≡ δ(Xij), one obtains the relation

J(ω) ≡ π

2

∑

α

cαm−1
α ω−1

α δ(ω − ωα)cT
α ,=

(
Φ0

2π

)2

ImM(ω) =
m∑

j=1

Jj(ω)mj(ω)mj(ω)T , (134)

where the spectral decomposition (with the eigenvalues Jj(ω) > 0 and the real and normalized eigenvectors mj(ω)) of
the real, positive, and symmetric matrix ImM(ω) has been used. The integer m ≤ n, nZ denotes the maximal rank of

L1Z1 IB1

L3

5L

K2

Z2

IB2

K4

Φc

J2

J3

J1

Φ

FIG. 28 Circuit graph of the gradiometer qubit (Koch et al.,
2004), under the influence of noise from two sources Z1 and Z2.
Branches of the graph denote Josephson junctions Ji, induc-
tances Li and Ki, current sources IBi, and external impedances
Zi, and are connected by the nodes (black dots) of the graph.
Inset: A resistively-shunted Josephson junction (RSJ) Ji, rep-
resented by a thick line in the circuit graph, is modeled by an
ideal junction (cross) with critical current Ici, shunt resistance
Ri, and junction capacitance Ci.
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ImM(ω), i.e., m = maxω (rank [ImM(ω)]). Using Eq. (134), and choosing cαij = γαjmi(ωαj), we find that Jj(ω) is the
spectral density of the j-th bath of harmonic oscillators in the environment, Jj(ω) = (π/2)

∑

α(γ2
αj/mαjωαj)δ(ω−ωαj).

From this model one obtains the Redfield equation, Eqs. (97), with a Redfield tensor, Eq. (98), of the form

ReΓ
(+)
lmnk = ϕT

lmJ(|ωnk|)ϕnk

e−βωnk/2

sinh(β|ωnk|/2)
, (135)

ImΓ
(+)
lmnk = − 2

π
P

∫ ∞

0

ϕT
lmJ(ω)ϕnk

ω2 − ω2
nk

(

ω − ωnk coth
βω

2

)

,

where ϕnk = 〈n|ϕ|k〉. For two levels n = 0, 1, and within the secular approximation, the relaxation and decoherence
rates T−1

1 and T−1
2 are found to be

T−1
1 = 4ϕ

†
01J(ω01)ϕ01 coth

(
βω01

2

)

= 4

m∑

j=1

|ϕ01 · mj(ω01)|2Jj(ω01) coth

(
βω01

2

)

, (136)

T−1
φ =

2

β
lim
ω→0

(ϕ00 − ϕ11)
†J(ω)

ω
(ϕ00 − ϕ11) =

2

β

m∑

j=1

|mj(0) · (ϕ00 − ϕ11)|2
Jj(ω)

ω

∣
∣
∣
∣
ω→0

, (137)

where we have used the spectral decomposition, Eq. (134), to obtain the second equality in each line.

2. Mixing Terms

In the case where Lc is diagonal, or if its off-diagonal elements can be neglected because they are much smaller
than LZ(ω) for all frequencies ω, one finds, using Eq. (131), that the contributions due to different impedances Zi are
independent, thus m = nZ and M(ω) = m̄L̄Z(ω)−1m̄T =

∑

j m̄jm̄
T
j iω/(Zj(ω) + iωLjj), where mj = m̄j is simply

the j-th column of the matrix m̄ and Ljj is the j-th diagonal entry of Lc. As a consequence, the total rates 1/T1 and

1/Tφ are the sums of the individual rates, 1/T
(j)
1 and 1/T

(j)
φ , where

1

T
(j)
1

= 4

(
Φ0

2π

)2

|ϕ01 · m̄j |2Re
ω01 coth (βω01/2)

Zj(ω01) + iω01Ljj
, (138)

1

T
(j)
φ

=
2

β

(
Φ0

2π

)2

|m̄j · (ϕ00 − ϕ11)|2Re
1

Zj(0)
. (139)

In general, the situation is more complicated because current fluctuations due to different impedances are mixed by
the presence of the circuit. In the regime Lc ≪ LZ(ω), L̄−1

Z can be expanded as

L̄−1
Z = (LZ(ω) + Lc)

−1
= L−1

Z − L−1
Z LcL

−1
Z + L−1

Z LcL
−1
Z LcL

−1
Z − · · · . (140)

The series Eq. (140) can be partially resummed,

L̄−1
Z (ω) = diag

(
iω

Zj(ω) + iωLjj

)

+ L−1
mix(ω), (141)

where the first term simply gives rise to the sum of the individual rates, as in Eqs. (138) and (139), while the second
term gives rise to mixed terms in the total rates. The rates can therefore be decomposed as (X = 1, 2, φ)

1

TX
=
∑

j

1

T
(j)
X

+
1

T
(mix)
X

. (142)

One finds for the mixing term in the relaxation rate

1

T
(mix)
1

= 4

(
Φ0

2π

)2

ϕ
†
01m̄ImL−1

mix(ω01)m̄
T ϕ01 coth

(
βω01

2

)

. (143)

One can show that there is no mixing term in the pure dephasing rate, i.e., 1/T
(mix)
φ = 0, and hence T

(mix)
2 = 2T

(mix)
1 .

In the case of two external impedances, nZ = 2, Eq. (140) can be completely resummed, with the result
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L−1
mix(ω) =

L12

(Z1(ω)/iω + L11)(Z2(ω)/iω + L22) − L2
12

(
L12

Z1(ω)/iω+L11
−1

−1 L12

Z2(ω)/iω+L22

)

≈ − ω2L12

Z1(ω)Z2(ω)
σx, (144)

where Lij are the matrix elements of Lc and where the approximation in Eq. (144) holds up to O(Z−3). In lowest
order in 1/Zi, one finds,

1

T
(mix)
1

= −
(

Φ0

2π

)2

Im
8ϕ12ω

2
01L12

Z1(ω01)Z2(ω01)
coth

(
βω01

2

)

. (145)

with ϕ12 = (ϕ01 · m̄1)(ϕ01 · m̄2).
If Ri ≡ Zi(ω01) are real (pure resistances) then, as predicted above, the imaginary part of the second-order term

in Eq. (144) vanishes, and we resort to third order,

ImL−1
mix =

ω3L12

R1R2

(
L12

R1

L11

R1
+ L22

R2

L11

R1
+ L22

R2

L12

R2

)

, (146)

neglecting terms in O(R−4
j ). If L12 ≪ Ljj , we obtain ImL−1

mix ≈ (ω3L12/R1R2)(L11/R1 + L22/R2)σx, and

1

T
(mix)
1

=

(
Φ0

2π

)2
8ω3

01L12

R1R2

(
L11

R1
+
L22

R2

)

ϕ12 coth

(
βω01

2

)

. (147)

For the gradiometer qubit (Fig. 28), we find L12 ≈M12M13M34/L1L3, L11 ≈ L2, L22 ≈ L4, where Lk denotes the
self-inductance of branch Xk (X=L or K) and Mkl is the mutual inductance between branches Xk and Xl, and where
we assume Mij ≪ Lk. The ratio between the mixing the single-impedance contribution scales as

1/T
(mix)
1

1/T
(j)
1

≈ ω2
01L12L

R2
, (148)

where we have assumed R1 ≈ R2 ≡ R, L11 ≈ L22 ≡ L, and ϕ01 · m̄1 ≈ ϕ01 · m̄2.
The relaxation time T1 was calculated at a temperature T ≪ ~ω01/kB for the circuit Fig. 28, for a critical current

Ic = 0.3µA for all junctions, and for the inductances L1 = 30 pH, L3 = 680 pH, L2 = L4 = 12 nH, M12 ≃
√
L1L2,

M34 ≃
√
L3L4 (strong inductive coupling), M35 = 6 pH, with ω01 = 2π · 30 GHz, and with the impedances Z1 = R,

Z2 = R + iRim, where R and Rim = ±10 kΩ are real (Rim > 0 corresponds to an inductive, Rim < 0 to a capacitive
character of Zi). In Fig. 29, T1 was plotted with and without mixing for a fixed value of M13 = 0.5 pH and a range

of R = ReZi. In the inset of Fig. 29, T1 (with mixing) and ((T
(1)
1 )−1 + (T

(2)
1 )−1)−1 (without mixing) are plotted for

R = 75 Ω for a range of mutual inductances M13; for this plot, the double minima of the potential U and ϕ01 were
computed numerically for each value of M13. The plots (Fig. 29) clearly show that summing the decoherence rates
without taking into account mixing term can both underestimate or overestimate the relaxation rate 1/T1, leading to
either an over- or underestimate of the relaxation and decoherence times T1 and T2.

ReZi [
℄
T 1[ns℄ 15012510075

76.565.554.5 M13 [pH℄ 10.750.57.552.5
FIG. 29 The relaxation rate T1 without the mixing term
(dashed blue line), and including the mixing term for
Rim = +10kΩ (solid red line) and Rim = −10 kΩ (dot-
dashed light blue line), for M13 = 0.5 pH as a function
of ReZi. Inset: T1 for R = ReZi = 75Ω for a range of
mutual inductances M13.
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V. ENTANGLEMENT

A composite system is entangled if its wavefunction Ψ cannot be expressed as a tensor product ΨA ⊗ ΨB of
wavefunctions ΨA and ΨB for the parts A and B of the system (a more general, but similar, definition exists for
mixed states). A variety of quantum communication scenarios (Bennett and DiVincenzo, 2000), some of which have
been implemented successfully in quantum optics, require maximally entangled states of two qubits, also known as
EPR pairs (Einstein et al., 1935), such as the spin singlet,

|S〉 =
1√
2

(|↑↓〉 − |↓↑〉) . (149)

The triplet state |T0〉 = |↑↓〉+ |↓↑〉 is another maximally entangled state, while the other two triplet states |T+〉 = |↑↑〉
and |T−〉 = |↓↓〉 are not entangled. An important feature of these states is that they are non-local, in the sense
that they violate Bell’s inequalities (Bell, 1966; Mermin, 1993). A universal quantum computer can, by definition,
produce arbitrary quantum states, and, in particular, entangled ones such as the singlet |S〉. E.g., the square root
of swap gate S, see Eq. (8), has the ability to turn the unentangled state |↑↓〉 into a maximally entangled one,
S|↑↓〉 = (|↑↓〉− i|↓↑〉)/(1− i), which is equivalent (up to a single-qubit operation) to the singlet. There may be cases
in which only certain entangled states are required for quantum communication, while quantum computation itself
does not need to be performed. In this case, a physical device dedicated to the task of producing entangled states of
some sort may be sufficient. We call devices of this sort entanglers (Burkard et al., 2000b) and discuss a number of
conceivable implementations of entanglers in solid state systems below.

Experiments with entangled photons have tested Bell’s inequalities (Aspect et al., 1982), and various quantum
communication protocols, such as dense coding (Mattle et al., 1996) and quantum teleportation (Boschi et al., 1998;
Bouwmeester et al., 1997). However, none of these protocols been implemented so far with massive particles (such as
electrons).

Unfactorizable states like Eq. (149) are very common in solid-state systems. Interacting many-particle systems
possess very complicated and entangled ground states. Not all of these are necessarily useful for quantum information
processing, though, because (i) it is essential that there is a physical mechanism to extract and separate a pair of
entangled particles from the many-body system in such a way that they can be used for quantum communication,
and (ii) for indistinguishable particles, not all states that “look entangled” really are. A measure of entanglement
which excludes pure antisymmetrization was defined in (Schliemann et al., 2001a,b).

A. Production of entangled electrons

1. Superconductor-normal junctions

A superconductor (SC) with s-wave pairing symmetry contains an entire “reservoir” of spin singlet states as in
Eq. (149) in the form of Cooper pairs that form the SC condensate (Schrieffer, 1964). It is thus natural to think
that such a system can act as a source of spin-entangled electrons. A proposed setup (Recher et al., 2001) is shown
in Fig. 30. The SC is held at the chemical potential µS , and is weakly coupled by tunnel barriers to two separate
quantum dots D1 and D2 which are in turn weakly coupled to Fermi liquid leads L1 and L2, both held at the same
chemical potential µ1 = µ2. The tunneling amplitudes between SC and dots, and dots and leads, are denoted by TSD

and TDL.
Andreev tunneling is a process in which two electrons (one with spin up and one with spin down) can tunnel

coherently through a normal barrier, while at the same time, single-particle tunneling as suppressed (Hekking et al.,
1993). The setup Fig. 30 with the intermediate quantum dots is designed to force two electrons from a Cooper pair
to tunnel coherently into separate leads rather than both into the same lead. The double occupation of a quantum
dot is suppressed by the Coulomb blockade mechanism (Kouwenhoven et al., 1997c).

The flow of entangled electrons from the SC via the dots to the leads is controlled by applying a bias voltage
∆µ = µS −µl > 0. The chemical potentials ǫ1 and ǫ2 of the two quantum dots can be tuned by external gate voltages
(Kouwenhoven et al., 1997c) such that the coherent tunneling of two electrons into different leads is at resonance,
while coherent tunneling of two electrons into the same lead is suppressed by the on-site Coulomb repulsion U of a
quantum dot.

The relevant parameters describing the device and the desired regime of operation are discussed in (Recher et al.,
2001). It is required that the barriers of the dots are asymmetric, |TSD| ≪ |TDL|, temperature is sufficiently small,
∆µ > kBT , and ∆, U, δǫ > ∆µ > γl, kBT , and γl > γS , where δǫ is the single-level spacing of the dots, ∆ is the SC
energy gap, and γl = 2πνl|TDL|2 are the dot-lead tunnel rates. The figure of merit for the device is the ratio between
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the desired current I1of pairwise entangled electrons tunneling into different leads and the unwanted current I2 of
electron pairs that end up in the same lead (Recher et al., 2001),

I1
I2

=
2E2

γ2

[
sin(kF δr)

kF δr

]2

e−2δr/πξ,
1

E =
1

π∆
+

1

U
, (150)

where kF denotes the Fermi wavevector, γ = γ1 + γ2, and ξ the SC coherence length.
The desired current I1 decreases exponentially with increasing distance δr = |r1 − r2| between the tunneling points

on the SC, the scale given by the superconducting coherence length ξ. With ξ typically being on the order of µm,
this does not pose severe restrictions for a conventional s-wave SC. In the important case 0 ≤ δr ∼ ξ the suppression
is only polynomial ∝ 1/(kF δr)

2, with kF being the Fermi wavevector in the SC. One also observes that the effect of
the quantum dots consists in the suppression factor (γ/E)2 for tunneling into the same lead. One therefore has to
impose the additional condition kF δr < E/γ, which can be satisfied for small dots with E/γ ≈ 100 and k−1

F ≈ 1 Å.
As an alternative to quantum dots as a means to separate the entangled electrons from the SC, it hsa been proposed

to use a Luttinger liquid (see Sec. V.A.2 below) or a resistive lead where the dynamical Coulomb blockade effect helps
to separate the electron pair (Recher and Loss, 2003).

2. Superconductor–Luttinger liquid junctions

In the Andreev entangler (Sec. V.A.1), entangled electron pairs are separated by the Coulomb repulsion in quantum
dots that are attached to the SC which acts as a source of entangled spin singlets. In related work (Recher and Loss,
2002a,b) and (Bena et al., 2002), it was suggested that the strong Coulomb interactions in a one-dimensional con-
ductor, forming a Luttinger liquid (Tsvelik, 2003) can play the same role. There is good experimental evidence for
Luttinger liquid (LL) behavior in carbon nanotubes (Bockrath et al., 1999).

The setting discussed in (Recher and Loss, 2002a,b) consists of a conventional s-wave SC tunnel-coupled to the
center (bulk) of two spatially separated, for all practical purposes infinitely extended, one-dimensional wires (e.g.,
carbon nanotubes) each forming a separate LL. While the Coulomb interaction within each wire is essential for the
separation of entangled pairs into distinct wires, it is assumed that the interaction between carriers in different wires is
negligible. In the absence of backscattering, the low energy excitations of the LL are long-wavelength charge and spin
density oscillations propagating with velocities uρ = vF /Kρ for the charge and uσ = vF for the spin (Schulz, 1990),
where vF is the Fermi velocity and Kρ < 1 due to interaction. Transfer of electrons from the SC to the LL-leads is
described by a tunneling Hamiltonian,

HT = t0
∑

ns

ψ†
nsΨs(rn) + H.c., (151)

where Ψs(rn) annihilates an electron with spin s at the point rn on the SC nearest to the LL-lead n = 1, 2, and ψ†
ns

creates it again with same spin and amplitude t0 at the point xn in LL n. By applying a bias µ = µS − µl between
the SC, with chemical potential µS , and the leads, held at the same chemical potential µl, a stationary current of
pairwise spin-entangled electrons can flow from the SC to the leads.

As in the case of the Andreev entangler with attached quantum dots, the performance of this device can be
quantified by the ratio between the two competing currents I1 and I2 (see Sec. V.A.1). From a T-matrix calculation
(Recher and Loss, 2002a,b), one obtains in leading order in µ/∆ and at zero temperature,

I1 =
I0
1

Γ(2γρ + 2)

vF

uρ

[
2Λµ

uρ

]2γρ

, I0
1 = 4πeγ2µ

sin2(kF δr)

(kF δr)2
e−2δr/πξ, (152)
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FIG. 30 The Andreev entangler. A Cooper pair is split up into
two entangled electrons which hop with amplitude TSD from two
points r1, r2 of the superconductor, SC, (distance δr = |r1−r2|)
onto two dots D1,2 by means of Andreev tunneling. The dots
are coupled to normal leads L1,2 with tunneling amplitude TDL.
In order to maximize the efficiency of the device, we require
asymmetric barriers, |TSD|/|TDL| ≪ 1. The chemical potentials
of the SC and leads are µl and µS .
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where Γ is the Gamma function, Λ a short distance cut-off on the order of the lattice spacing in the LL, γ =
2πνSνl|t0|2 the probability per spin to tunnel from the SC to the LL-leads, νS and νl the energy DOS per spin for
the superconductor and the LL-leads at the chemical potentials µS and µl, resp., and δr the separation between the
tunneling points on the SC. The current I1 has a characteristic non-linear dependence on the voltage (electro-chemical
potential µ), I1 ∝ µ2γρ+1, with an interaction dependent exponent γρ = (Kρ+K−1

ρ )/4−1/2 > 0, which is the exponent
for tunneling into the bulk of a single LL, i.e. ρ(ε) ∼ |ε|γρ , where ρ(ε) is the single-particle density of states (Schulz,
1990). In the non-interacting limit γρ = 0 the current is given by I0

1 . As in Sec. V.A.1, the coherence length ξ of
the Cooper pairs should exceed δr in order to obtain a finite measurable current. Note that the suppression of the
current by 1/(kF δr)

2 can be considerably reduced with the use of lower dimensional SCs (Recher and Loss, 2002a,b).
The desired current I1 now has to be compared with unwanted current consisting of electron pairs tunneling into the
same lead and having δr = 0. It is found (Recher and Loss, 2002a,b) that the current I2 for tunneling into the same
lead (1 or 2) is suppressed if µ < ∆ with the result, again in leading order in µ/∆,

I2 = I1
∑

b=±1

Ab

(
2µ

∆

)2γρb

, (153)

where Ab is an interaction dependent constant of order one, and where γρ+ = γρ, and γρ− = γρ+ + (1−Kρ)/2 > γρ+.
Note that in Eq. (153) the current I1 needs to be evaluated at δr = 0. In the non-interacting limit, I2 = I1 = I0

1 is
obtained by putting γρ = γρb = 0, and uρ = vF . The expression Eq. (153) for I2 shows that the unwanted injection
of two electrons into the same lead is suppressed compared to I1 by a factor of (2µ/∆)2γρ+ , where γρ+ = γρ, if both
electrons are injected into the same direction (left or right movers), or by (2µ/∆)2γρ− if the two electrons travel in
different directions. It is more likely that the two electrons move in the same direction than in opposite directions,
because γρ− > γρ+. The suppression of the current I2 by 1/∆ is a manifestation the two-particle correlations in
the LL when the electrons tunnel into the same lead, which is similar to the Coulomb blockade effect in the case of
tunneling into quantum dots in Sec. V.A.1. As the SC gap ∆ becomes larger, the delay time between the arrivals
of the two partner electrons of a Cooper pair becomes shorter, and the effect the first electron in the LL has on the
second electron tunneling into the LL increases. Increasing the bias µ opens more available channels into which the
electron can tunnel, and therefore the effect of the SC gap ∆ is less pronounced. This correlation effect disappears
when interactions in the LL are absent, γρ = γρb = 0. Experimental systems with LL behavior are e.g. metallic carbon
nanotubes with similar exponents as derived here (Egger and Gogolin, 1997; Kane et al., 1997).

3. Transport through quantum dots

Entanglers with a single quantum dot attached to leads with a very narrow bandwidth (Oliver et al., 2002) or with
three coupled quantum dots (Saraga and Loss, 2003) have been proposed. The idea behind these proposals is the
harness the singlet ground state of a single two-electron quantum dot by extracting the two electrons into two separate
leads. In both proposals, the separation is enhanced due to two-particle energy conservation. A double-dot turnstile
device with time-dependent barriers was proposed in (Hu and Das Sarma, 2004).

4. Coulomb scattering in a 2D electron system

Scanning probe techniques can be applied to a two-dimensional (2D) electron system formed in a semiconductor
heterostructure in order to monitor and control the flow of electrons (Topinka et al., 2000, 2001). It has been proposed
to generate spin-entangled pairs of electrons using this technique to control Coulomb scattering in a interacting 2D
electron system (Saraga et al., 2004). At a scattering angle of π/2, it is expected that constructive two-particle
interference leads to a enhancement of the spin-singlet scattering probability, while the triplet scattering is suppressed.
The scattering amplitudes have been calculated within the Bethe-Salpeter equation for small rs and allow an estimate
of the achievable current of spin-entangled electrons (Saraga et al., 2004).

5. Entangled Electrons in a Fermi Sea

A particularly appealing aspect of the electron spin as a carrier of quantum information is that it is attached to a
charge, and thus it can—in principle—be transported in a conductor. One can therefore envision solid-state structures
(e.g., on a microchip) where entanglement is produced in one location by one of the previously discussed methods, and
subsequently conveyed through a wire to the location where entanglement is “used up” in some quantum information
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protocol. While transporting qubits is quite unproblematic in the case of photons as the quantum information carriers
(photons have been used in many experiments to carry quantum information, even over distances of kilometers), it is
less trivial for electrons. When an electron is injected into a metallic wire, it is immersed into a sea of other electrons
that (i) are indistinguishable from the injected electron, and (ii) constantly interact with all other electrons (including
the injected one) via the Coulomb interaction. In this Section, the stability of spin entanglement in the Fermi sea
will be discussed (Burkard et al., 2000b; DiVincenzo and Loss, 1999). It turns out that (i) the indistinguishability of
particles in the Fermi sea is actually not a problem for the transport of spin qubits and (ii) the Coulomb interaction
does have some effect, which is however mitigated by the phenomenon of screening which is well-known in interacting
Fermi liquids (Mahan, 1993). More precisely, when an electron in the orbital state q is added to a Fermi sea (lead),
the quasiparticle weight of that state will be renormalized by 0 ≤ zq ≤ 1, i.e. some weight 1 − zq to find the electron
in the original state q will be distributed among all the other electrons. Such a rearrangement of the Fermi system
due to the Coulomb interaction happens very quickly, on a time scale given by the inverse plasma frequency.

In order to analyze this effect quantitatively, the entangled two-electron state injected into two distinct leads 1 and
2 can be written in second quantized notation,

|ψt/s
nn′〉 =

1√
2

(a†
n↑a

†
n′↓ ± a†

n↓ a
†
n′↑ ) |ψ0〉, (154)

where s and t stand for the singlet and triplet, |ψ0〉 for the filled Fermi sea, and n = (q, l), where q denotes the
momentum and l the lead quantum number of an electron. As usual, the operator a†

nσ creates an electron in state n

with spin σ. After their injection, the two electrons of interest are no longer distinguishable from the electrons of the
leads, and consequently the two electrons taken out of the leads will, in general, not be the same as the ones injected.

The time evolution of the triplet or singlet states, interacting with all other electrons in the Fermi sea, is described

by the 2-particle Green’s function Gt/s(12,34; t) = 〈ψt/s
12
, t|ψt/s

34
〉, which is related to the standard 2-particle Green’s

function G(12, 34; t) by

Gt/s(12,34; t) = −1

2

∑

σ

[G(12̄, 34̄; t) ±G(12̄, 3̄4; t)] , (155)

where n = (n, σ) and n̄ = (n,−σ). Assuming that at time t = 0, a triplet (singlet) is prepared, then the fidelity of

transmission

P (t) = |Gt/s(12,12; t)|2 (156)

is defined as the probability for finding a triplet (singlet) after time t.
With Eq. (155), the problem reduces to that of evaluating the standard two-particle Green’s function G(12, 34; t) =

−〈Ta1(t)a2(t)a
†
3a

†
4〉 for a time- and spin-independent Hamiltonian, H = H0 +

∑

i<j Vij , where H0 describes the free

motion of the N electrons, and Vij is the bare Coulomb interaction between electrons i and j, 〈...〉 denotes the zero-
temperature expectation value, and T is the time ordering operator. One can assume that the leads are sufficiently
separated, so that the mutual Coulomb interaction can be neglected, and thus the problem of finding an explicit value
for G(12, 34; t) is simplified since the 2-particle vertex part vanishes (i.e. the Hartree-Fock approximation is exact),

G(12, 34; t) = G(13, t)G(24, t) −G(14, t)G(23, t), (157)

with the interacting single-particle Green’s functions

G(n, t) = −i〈ψ0|Tan(t)a†
n
|ψ0〉 ≡ Gl(q, t), (158)

for each lead l = 1, 2. Substituting this back into Eq. (155), one obtains

Gt/s(12,34; t) = −G(1, t)G(2, t)[δ13δ24 ∓ δ14δ23], (159)

where the upper (lower) sign refers to the spin triplet (singlet). For the initial state (t = 0), or in the absence of
interactions, one finds G(n, t) = −i, and thus Gt/s reduces to δ13δ24 ∓ δ14δ23, and P = 1. The evaluation of the
(time-ordered) single-particle Green’s functions G1,2 close to the Fermi surface yields the standard result (Mahan,
1993) G1,2(q, t) ≈ −izqθ(ǫq − ǫF )e−iǫqt−Γqt, which holds for 0 ≤ t . 1/Γq, where 1/Γq is the quasiparticle lifetime,
ǫq = q2/2m the quasiparticle energy (of the added electron), and ǫF the Fermi energy. For a two-dimensional electron
system (2DES), as e.g. in GaAs heterostructures, Γq ∝ (ǫq − ǫF )2 log(ǫq − ǫF ) (Giuliani and Quinn, 1982) within the
random phase approximation (RPA), which accounts for screening and which is obtained by summing all polarization
diagrams (Mahan, 1993). The quantity of interest here is the quasiparticle weight, zF = (1− ∂

∂ω Re Σret(kF , ω))−1
∣
∣
ω=0

,
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evaluated at the Fermi surface, where Σret(q, ω) is the retarded irreducible self-energy. For momenta q close to the
Fermi surface and for identical leads (G1 = G2) we find |Gt/s(12,34; t)|2 = z4

F | δ13δ24∓ δ14δ23|2, for times satisfying
0 < t . 1/Γq. The fidelity therefore turns out to be

P = z4
F (160)

.
The irreducible self-energy Σret and from it the quasiparticle weight factor in two dimensions were evaluated

explicitly (Burkard et al., 2000b), with the final result

zF =
1

1 + rs (1/2 + 1/π)
, (161)

in leading order of the interaction parameter rs = 1/kFaB, where aB = ǫ0~
2/me2 is the Bohr radius. In particular,

in a GaAs 2DES we have aB = 10.3 nm, and rs = 0.614, and thus we obtain zF = 0.665. The expansion in
powers of rs for the exact RPA self-energy can be summed up and evaluated numerically, with the (more accurate)
result zF = 0.691155 for GaAs. The fidelity of transmission of the injected singlet in this case is around P ≈ 0.2.
However, for large electron density (small rs), P is closer to unity. Note the fidelity of the (“postselected”) singlet
pairs which can successfully be removed from the Fermi sea, is equal to 1, provided that (as assumed here) the spin-
scattering effects are negligible. That this is indeed the case in GaAs 2DEGs is supported by experiments where the
electron spin has been transported phase-coherently over distances of up to 100µm (Awschalom and Kikkawa, 1999;
Kikkawa and Awschalom, 1998; Kikkawa et al., 1997).

B. Detection of spin entanglement

Efforts are being made to produce spin entanglement in solid-state structures; therefore, it is only natural to ask
how one can test for the presence of entanglement in such a setting. Here, a variety of tests for spin entanglement are
described. This investigation touches on fundamental issues such as the non-locality of quantum mechanics, especially
for massive particles, and genuine two-particle Aharonov-Bohm effects which are fascinating topics in their own right.
The main idea in all of the following detection schemes is to exploit the unique relation between the symmetry of the
orbital state and the two-electron spin state which makes it possible to detect an electron spin state via the orbital
(charge) degrees of freedom.

1. Coupled quantum dots

The first setup to be considered can be used to probe the entanglement of two electrons localized in a double-
dot by measuring a transport current and its fluctuations, or current noise (Loss and Sukhorukov, 2000). It is
assumed that the double-dot is weakly coupled to in- and outgoing leads (at chemical potentials µ1, 2) with tun-
neling amplitude T , where the dots are shunted in parallel. The regime of interest is (i) the Coulomb blockade
regime (Kouwenhoven et al., 1997c) where the charge on the dots is quantized and (ii) the cotunneling regime
(Averin and Nazarov, 1992; König et al., 1997), where single-electron tunneling is forbidden by energy conservation.
The latter regime is defined by U > |µ1±µ2| > J > kBT, 2πνT 2 where U is the single-dot charging energy, ν the lead
density of states, and J the exchange coupling between the dots. The current in the cotunneling regime is generated
by a coherent virtual process where one electron tunnels from a dot to, say, lead 2 and then a second electron tunnels
from lead 1 to this dot. If the bias voltage is larger than the exchange coupling, |µ1−µ2| > J , elastic as well as inelastic
cotunneling will occur. It will be assumed that T is small enough for the double-dot to return to its equilibrium state
after each tunneling event. An electron can either pass through the upper or lower dot, therefore a closed loop is
formed by these two paths. A magnetic flux then gives rise to an Aharonov-Bohm phase φ = ABe/~ (A being the
loop area) between the upper and the lower paths leading to quantum interference effects. This transport setting is
sensitive to the spin symmetry of the two-electron state on the double dot; if the two electrons on the double-dot
are in the singlet state, then the tunneling current acquires an additional phase of π leading to a sign reversal of the
coherent contribution compared to that for triplets. In cotunneling current, this additional phase manifests itself in
the sign of an interference term (Loss and Sukhorukov, 2000)

I = eπν2T 4 µ1 − µ2

µ1µ2
(2 ± cosφ) , (162)

where the upper sign refers to the triplet states in the double-dot and the lower sign to the singlet state. The shot
noise is Poissonian with power S(0) = −e|I|, hence it has the same dependence on the state on the double dot.
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The shot noise has also been calculated for finite frequencies in (Loss and Sukhorukov, 2000), and it was found
that again S(ω) ∝ (2 ± cosφ), and that the odd part of S(ω) leads to slowly decaying oscillations of the noise in real
time, S(t) ∝ sin(µt)/µt, µ = (µ1 + µ2)/2, which can be ascribed to a charge imbalance on the double dot during an
uncertainty time µ−1.

Note that while the scheme described above is able to distinguish the states |S〉 and |T0〉 on the dots, the three
triplets |T0〉, |T+〉, and |T−〉, can be further distinguished by an orientationally inhomogeneous magnetic field which
results in a spin-Berry phase (Loss and Goldbart, 1992; Loss and Sukhorukov, 2000) that leads to left, right or no
phase-shift in the Aharonov-Bohm oscillations of the current (noise).

2. Coupled dots with SC leads

A related scenario of double-dots (DD) has been considered in (Choi et al., 2000), where two quantum dots are again
shunted in parallel between the leads, but without any direct coupling between them. The two dots are assumed to be
coupled via tunneling (with amplitude T ) to two superconducting leads. It turns out that the s-wave SC energetically
favors an entangled singlet-state on the dots. In addition to this, the coupling to the SC provides a mechanism for
detecting the spin state via the Josephson current through the double dot system. In leading order ∝ T 4, the spin
coupling is described by a Heisenberg Hamiltonian (Choi et al., 2000)

Heff ≈ J (1 + cosϕ)

(

Sa · Sb −
1

4

)

, (163)

where J ≈ 2T 2/ǫ, ǫ is the energy difference from the dot state to the Fermi level, and ϕ is the average phase difference
across the SC-DD-SC junction. The exchange coupling between the spins can be controlled by tuning the external
parameters T and ϕ, thus providing another implementation of a two-qubit quantum gate (Sec. I.A.4) or entangler
(Sec. V.A). The spin state (singlet or triplet) on the dot can be probed if the SC leads are joined with one additional
(ordinary) Josephson junction with coupling J ′ and phase difference θ into a SQUID. The SC current IS flowing in
this ring is given by (Choi et al., 2000)

IS/IJ =

{

sin(θ − 2πf) + (J ′/J) sin θ , singlet,

(J ′/J) sin θ , triplets,
(164)

where IJ = 2eJ/~. The spin state of the DD is now probed by measuring the spin- and flux-dependent critical current
Ic = maxθ{|IS |} by biasing the system with a dc current I until a finite voltage V appears for |I| > Ic (the SC goes
into the normal state). Another interesting effect is long-distance coupling between spins residing in dots separated
by δr which is induced by the presence of the SC. The resulting exchange coupling is

J(δr) = J(0)

[
sin(kF δr)

kF δr

]2

e−2δr/ξ. (165)

3. Beam splitter shot noise

Pairwise spin entanglement between electrons in two mesoscopic wires can be detected from a charge current
measurement after transmission through an electronic beam splitter (Burkard et al., 2000b). In this scheme, the
singlet EPR pair Eq. (149) gives rise to an enhancement of the shot noise power (“bunching” behavior), whereas
the triplet EPR pair |T0〉 leads to a suppression of noise (“antibunching”). This behavior can be anticipated from
a textbook example: the scattering theory of two identical particles in vacuum (Ballentine, 1990; Feynman et al.,
1965). There, the differential scattering cross-section σ in the center-of-mass frame can be expressed in terms of the
scattering amplitude f(θ) and scattering angle θ as

σ(θ) = |f(θ) ± f(π − θ)|2 = |f(θ)|2 + |f(π − θ)|2 ± 2Ref∗(θ)f(π − θ), (166)

the first two terms on the right being the contributions which would be obtained if the particles were distinguishable,
and the third (exchange) term the contribution due to the particles’ indistinguishability. This last term gives rise to
genuine two-particle interference effects. Here, the plus (minus) sign applies to spin-1/2 particles in the singlet (triplet)
state, described by a (anti)symmetric orbital wave function. The very same two-particle interference mechanism which
is responsible for the enhancement (reduction) of the scattering cross section σ(θ) near θ = π/2 also leads to an increase
(decrease) of the correlations of the particle number in the output arms of a beam splitter (Loudon, 1998).
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FIG. 31 Setup for measuring the noise of entangled states. Uncorrelated electrons are fed into the entangler (see text) through
the Fermi leads 1′, 2′ and are transformed into pairs of electrons in the entangled singlet (triplet) state |∓〉, which are injected
into leads 1, 2 (one electron of undetermined spin state into each lead). The entanglement of the, say, spin singlet can then be
detected in an interference experiment using a beam splitter (with no backscattering): Since the orbital wave function of the
singlet is symmetric, the electrons leave the scattering region preferably in the same lead (3 or 4). This correlation (“bunching”)
is revealed by an enhancement of the noise by a factor of 2 in the outgoing leads.

For the detection of spin entanglement of electrons carried by two mesoscopic wires, we propose a non-equilibrium
transport measurement based on the set-up shown in Fig. 31. The beam splitter ensures that the electrons leaving the
entangler (see Sec. V.A) have an amplitude t to be interchanged (without mutual interaction) such that 0 < |t|2 < 1.
In the absence of spin scattering the noise measured in the outgoing leads 3 and 4 exhibits bunching behavior for pairs
of electrons with a symmetric orbital wave function (Hanbury Brown and Twiss, 1956), i.e., for spin singlets, while
spin triplets induce antibunching behavior, due to their antisymmetric orbital wave function. The latter situation
has been considered for electrons in the normal state both in theory (Büttiker, 1990, 1992; Martin and Landauer,
1992) and in recent experiments (Henny et al., 1999; Liu et al., 1998; Oliver et al., 1999; Torrès and Martin, 1999).
The experiments have been performed in semiconductor nanostructures with geometries that are closely related to
the set-up proposed in Fig. 31 but without entangler. It should be stressed here that if bunching (enhancement of
shot noise) is detected, it can be interpreted as a unique signature for entanglement of the injected electrons, since
the maximally entangled singlet is the only state leading to this effect. The effect of interactions in the leads have
already been assessed in Sec. V.A.5. In order to determine the shot noise of spin-entangled electrons, the standard
scattering matrix approach (Büttiker, 1990, 1992), extended to a situation with entanglement, is applied.

We start by writing down the entangled incident state |±〉 ≡ |ψt/s
12

〉, where we set n = (εn, n), now using the
electron energies εn instead of the momentum as the orbital quantum number in Eq. (154) and where the operator
a†ασ(ε) creates an incoming electron in lead α with spin σ and energy ε. The theory for the current correlations in
a multiterminal conductor (Büttiker, 1990, 1992) can easily be generalized to the case of entangled scattering states,
with the important consequence that Wick’s theorem does not apply. The operator for the current carried by electrons
in lead α of a multiterminal conductor can be written as

Iα(t) =
e

hν

∑

εε′σ

[
a†ασ(ε)aασ(ε′) − b†ασ(ε)bασ(ε′)

]
exp [i(ε− ε′)t/~], (167)

where the operators bασ(ε) for the outgoing electrons are related to the operators aασ(ε) for the incident electrons via
bασ(ε) =

∑

β sαβaβσ(ε), where sαβ denotes the scattering matrix. The scattering matrix is assumed to be spin- and

energy-independent. Note that for a discrete energy spectrum in the leads, one can normalize the operators aασ(ε)

such that {aασ(ε), a†βσ′(ε′)} = δσσ′δαβδεε′/ν, where the Kronecker symbol δεε′ equals 1 if ε = ε′ and 0 otherwise.
Here, ν stands for the density of states in the leads. Each lead is assumed to consist of only a single quantum channel;
the generalization to leads with several channels is straightforward but not required here. The current Eq. (167) can
be expressed in terms of the scattering matrix as

Iα(t) =
e

hν

∑

εε′σ

∑

βγ

a†βσ(ε)Aα
βγaγσ(ε′)ei(ε−ε′)t/~, (168)

Aα
βγ = δαβδαγ − s∗αβsαγ . (169)

The correlation function between the currents Iα(t) and Iβ(t) in two leads α, β = 1, .., 4 of the BS

Sχ
αβ(ω) = lim

τ→∞

hν

τ

∫ τ

0

dt eiωt ReTr [δIα(t)δIβ(0)χ] , (170)

where δIα = Iα − 〈Iα〉, 〈Iα〉 = Tr(Iαχ), ν is the density of states in the leads, and χ is the density matrix of the
injected electron pair. Here, only the zero-frequency correlator Sαβ ≡ Sχ

αβ(0) will be of interest (the dependence on
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χ was omitted). Further evaluation with χ = |±〉〈±| yields

Sαβ =
e2

hν

[∑

γδ

′

Aα
γδA

β
δγ ∓ δε1,ε2

(
Aα

12A
β
21+Aα

21A
β
12

)]

, (171)

where
∑′

γδ denotes the sum over γ = 1, 2 and all δ 6= γ, and where again the upper (lower) sign refers to triplets

(singlets). Note that the autocorrelator Sαα is the shot noise in lead α.
The result Eq. (171) can now be applied to the set-up shown in Fig. 31 involving four leads, described by the

single-particle scattering matrix elements, s31 = s42 = r, and s41 = s32 = t, where r and t denote the reflection
and transmission amplitudes at the beam splitter. In the absence of backscattering, s12 = s34 = sαα = 0, the noise
correlations for the incident state |±〉 are

S33 = S44 = −S34 = 2
e2

hν
T (1 − T ) (1 ∓ δε1ε2

) , (172)

where T = |t|2 denotes the transmittivity of the beam splitter. For the remaining two triplet states |↑↑〉 and |↓↓〉 one
also obtains Eq. (172) with the upper sign. The mean current in lead α is, both for singlets and triplets, |〈Iα〉| = e/hν.
The noise-to-current ratio, or Fano factor, F = Sαα/ |〈Iα〉| is thus found to be

F = 2eT (1− T ) (1 ∓ δε1ε2
) , (173)

and correspondingly for the cross correlations. Eq. (173) implies that if electrons in the singlet state |−〉 with equal
energies, ε1 = ε2, are injected pairwise into the leads 1 and 2, then the zero frequency noise is enhanced by a factor
of two, F = 4eT (1 − T ), compared to the shot noise of uncorrelated particles (Büttiker, 1990, 1992; Khlus, 1987;
Landauer, 1989; Lesovik, 1989; Martin and Landauer, 1992), F = 2eT (1 − T ). This noise enhancement is due to
bunching of electrons in the outgoing leads, caused by the symmetric orbital wavefunction of the spin singlet |−〉. The
triplet states |+〉, | ↑↑〉, and | ↓↓〉 exhibit antibunching, i.e. a complete suppression of the noise, Sαα = 0. As already
mentioned above, the noise enhancement for the singlet |−〉 is a unique signature for entanglement (no unentangled
state exists which can lead to this phenomenon), therefore entanglement can be observed by measuring the noise power
of a mesoscopic conductor as shown in Fig. 31. The various triplet states |+〉, |↑↑〉, and |↓↓〉 cannot be distinguished
by the noise measurement alone; this distinction requires a measurement of the spins of the outgoing electrons, e.g.
by inserting spin-selective tunneling devices (Prinz, 1998) into leads 3 and 4. The same signature of entanglement as
for the shot noise can also be seen in the full counting statistics of the charge transport (Taddei and Fazio, 2002).

4. Lower bounds for entanglement

Here, the result of the previous Section is extended by providing a quantitative lower bound for the amount E
of spin entanglement carried by individual pairs of electrons, related to the zero-frequency current correlators when
measured in a beam splitter setup (Fig. 32). This result (Burkard and Loss, 2003) therefore relates experimentally ac-
cessible quantities with a measure for entanglement, the entanglement of formation E (Bennett et al., 1996b). Having
information about E is important since it quantifies the usefulness of a bipartite state for quantum communication.

Starting form a general state, expressed in the singlet-triplet basis as χ = F |−〉〈−|+G0|+〉〈+|+∑i=↑,↓Gi|ii〉〈ii|+
∆χ, where ∆χ are off-diagonal terms, one can decompose the current correlators Eq. (170) as

Sαβ ≡ Sχ
αβ = FS

|Ψ−〉
αβ +G0S

|Ψ+〉
αβ +

∑

i=↑,↓

GiS
|ii〉
αβ , (174)

where S
|Ψ〉
αβ ≡ S

|Ψ〉〈Ψ|
αβ . The off-diagonal terms in ∆χ do not enter Sαβ because the operators δIα(t) conserve total

spin. The coefficients F , G0, G↑, and G↓ depend on the state preparation and therefore on the entangler. The
more information about these coefficients can be gained, the better the chance to measure the entanglement of χ.
In Sec. V.B.3 it was shown that the singlet state |−〉 gives rise to enhanced shot noise (and cross-correlators) at

zero temperature, S
|−〉
33 = −S|−〉

34 = 2eIT (1 − T )f , with the reduced correlator f = 2, as compared to the “classical”

Poissonian value f = 1. All triplet states are noiseless, S
|+〉
αβ = S

|↑↑〉
αβ = S

|↓↓〉
αβ = 0 (α, β = 3, 4). Therefore, both the

auto- and cross-correlations are only due to the singlet component of the incident two-particle state,

S33 = −S34 = FS|Ψ−〉 = 2eIT (1 − T )f, f = 2F. (175)

The entanglement of a bipartite pure state |ψ〉 ∈ HA⊗HB can be measured by the von Neumann entropy SN(|ψ〉) =
−TrBρB log ρB (log in base 2) of the reduced density matrix ρB = TrA|ψ〉〈ψ|, where 0 ≤ SN ≤ 1, SN(|Ψ±〉) =
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FIG. 32 Entanglement of formation E of the electron
spins versus singlet fidelity F and the reduced correlator
f = S33/2eIT (1 − T ). The curve illustrates the exact
relation for Werner states. For general states, the curve
is a lower bound for E; allowed values for E and f (or
F ) are in the shaded region.

SN(|Φ±〉) = 1, and SN(|ψ〉) = 0 ⇔ |ψ〉 = |ψ〉A ⊗ |ψ〉B. Physically, if SN(|ψ〉) ≃ N/M then M ≥ N copies of
|ψ〉 are sufficient to perform, e.g., quantum teleportation of N qubits for N,M ≫ 1 (similarly for other quantum
communication protocols). Generally, for a bipartite mixed state χ the entanglement of formation (Bennett et al.,
1996b) is E(χ) = min{(|χi〉,pi)}∈E(χ)

∑

i piSN(|χi〉), where E(χ) = {(|χi〉, pi)|
∑

i pi|χi〉〈χi| = χ}, i.e., the least expected
entanglement of any ensemble of pure states realizing χ. A state with E > 0 (E = 1) is (maximally) entangled, and
neither local operations nor classical communication (LOCC) between A and B can increase E.

For an arbitrary mixed state of two qubits χ, E(χ) is not a function of only the singlet fidelity F = 〈−|χ|−〉.
However, E(χ) = E(F ) for the Werner states (Werner, 1989)

ρF = F |−〉〈−| + 1 − F

3

(

|+〉〈+| +
∑

i=±

|Φi〉〈Φi|
)

, (176)

the unique rotationally invariant states with singlet fidelity F , where |Φ±〉 = (|↑↑〉 ± |↓↓〉)/
√

2. The entanglement of

formation of the Werner states is known (Bennett et al., 1996b) as E(F ) ≡ E(ρF ) = H2(1/2 +
√

F (1 − F )) if 1/2 <
F ≤ 1 and E(F ) ≡ E(ρF ) = 0 if 0 ≤ F < 1/2, with the dyadic Shannon entropy H2(x) = −x log x− (1−x) log(1−x).
With Eq. (175), one can now express E(ρF ) in terms of the reduced correlator f (Fig. 32).

This result can be generalized to arbitrary mixed states χ of two spins (qubits) using the following trick. Any state
χ can be transformed into ρF with F = 〈Ψ−|χ|Ψ−〉 by a random bipartite rotation (“twirl”) (Bennett et al., 1996a,b),
i.e. by applying U ⊗ U with a random U ∈ SU(2). Entanglement can only decrease (or remain constant) under the
twirl operation because it involves only LOCC,

E(F ) ≤ E(χ). (177)

Thus, the entanglement of formation E(F ) of the corresponding Werner state represents a lower bound on E(χ)
(Fig. 32). A noise power exceeding f = 2F > 1 in the BS setup Fig. 31 can therefore be interpreted as a sign of
entanglement, E(F ) > 0, between the electron spins injected into leads 1 and 2.

The lower bounds that have been discussed so far are only useful if one is assessing a source that aims at producing
spin spinglet entanglement. However, it is possible in principle to extend this result to arbitrary entangled states if a
means of rotating the spin of the carriers in one of the ingoing arms of the BS is available; such spin rotators could,
e.g., be implemented by making use of the Rashba spin orbit effect (Egues et al., 2002).

The relation between the shot noise f and the entanglement E has also been explored in a number of non-ideal
situations, in the presence of decoherence, backscattering, and thermally mixed input states (Burkard and Loss, 2003).

5. Proposed tests of Bell’s inequalities

There have been a number of proposals to test Bell’s inequalities (Bell, 1966; Mermin, 1993) with spin-entangled

electrons directly with a spin-sensitive detection scheme (Kawabata, 2001; Lesovik et al., 2001; Mâitre et al., 2000)
in contrast to the detection scheme in Secs. V.B.3 and V.B.4 which only involves the measurement of a charge
current. Combinations of the Andreev entangler setup with a Bell test were studied in (Chtchelkatchev et al., 2002;
Samuelsson et al., 2004a).

Bell tests for orbital entanglement with electron charge qubits in ballistic conductors have also been pro-
posed (Ionicioiu et al., 2001). A scheme to generate two-particle orbital entanglement in a mesoscopic normal-
superconductor system and to detect it via a violation of a Bell inequality was analyzed in (Samuelsson et al., 2003).
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A violation of a Bell inequality due to orbital entanglement in a Hanbury Brown–Twiss setting was also proposed
(Samuelsson et al., 2004b).

C. Production of entangled photons

The use of entangled photons from parametric down-conversion in non-linear crystals (Kwiat et al., 1995, 1999)
has become a routine process (Boschi et al., 1998; Bouwmeester et al., 1997; Mattle et al., 1996). However, two
disadvantages of these sources are (i) that they are quite inefficient (between 106 and 1010 pump photons per yield
photon) and (ii) that they are stochastic, i.e., although the rate (mean number of entangled pairs per second) is known,
the precise instant of the emission cannot be controlled. It would be desirable to have a source of entangled photons
that is both deterministic and efficient. The use of electron-hole recombination in a single QD was suggested in
(Benson et al., 2000; Moreau et al., 2001). Non-resonant excitation of a QD is expected to produce pairs of entangled
photons with an efficiency (production rate/pump rate) that is about four orders of magnitude bigger than for
parametric down-conversion (Moreau et al., 2001). Ultraviolet entangled photons have recently been generated in the
semiconductor CuCl in a process called resonant hyper-parametric scattering (RHPS) which involves the creation of
a virtual biexciton state in the crystal (Edamatsu et al., 2004). Although this is still a stochastic source, RHPS is a
very efficient process.

The production of polarization-entangled photons using the biexcitonic ground state has been investigated in two

tunnel-coupled QDs (Gywat et al., 2002). Biexcitons are bound states of two excitons in a semiconductor, where each
exciton is the bound state of a negatively charged conduction-band electron and a positively charged valence-band
hole. Excitonic absorption in single QDs has been studied theoretically (Efros and Efros, 1982), and biexcitonic states
in single QDs have been investigated (Banyai et al., 1988; Bryant, 1990; Hawrylak, 1999; Hu et al., 1990; Kiraz et al.,
2002; Nair and Takagahara, 1996; Santori et al., 2002; Takagahara, 1989). Single excitons in coupled QDs have been
observed in experiment (Bayer et al., 2001; Schedelbeck et al., 1997) and spin spectroscopy of excitons in QDs was
performed using polarization-resolved magnetophotoluminenscence (Johnston-Halperin et al., 2001). When discussing
confined excitons, one needs to distinguish two regimes (Efros and Efros, 1982): (i) The weak confinement limit
aX ≪ ae, ah, where aX is the radius of the free exciton and ae, ah the electron and hole effective Bohr radii in the
QD. In this regime, an exciton can be considered (as in the bulk material) as a boson in an external confinement
potential. (ii) The strong confinement limit aX ≫ ae, ah, where electrons and holes are separately confined in the
QD. In this regime, electron-hole pairs cannot be considered as bosons anymore. In bulk GaAs aX ≈ 10 nm, one is
often in an intermediate regime aX ≈ ae, ah for typical QD radii.

Starting from a strong confinement ansatz and using the Heitler-London (HL) approximation, the low-energy (spin-
resolved) biexciton spectrum (in which the electrons and holes each form either a spin singlet or triplet) and the
oscillator strengths Fig. 33, being a measure for the optical transition rates, have been calculated (Gywat et al.,
2002). The HL ansatz is similar to the one used for electrons in Sec. III.B.1 with the Hamiltonian

H =
∑

α=e,h

2∑

i=1

hαi +HC +HZ +HE , (178)

where hαi = (pαi+qαA(rαi)/c)
2/2mα+Vα(rαi) is the single-particle Hamiltonian for the i-th electron (α = e, qe = −e)

or hole (α = h, qh = +e). The Coulomb interaction is included by HC = (1/2)
∑

(α,i) 6=(β,j) qαqβ/κ|rαi − rβj |, with

a dielectric constant κ (for bulk GaAs, κ = 13.18). A magnetic field B in z direction leads to orbital effects via the
vector potential (in the symmetric gauge) A = B(−y, x, 0)/2 and to the Zeeman term HZ =

∑

α,i gαµBBS
αi
z , where

gα is the effective g-factor of the electron (hole) and µB is the Bohr magneton.
Two-particle wave functions for electrons and for holes separately are constructed according to the HL method, i.e.

a symmetric (|s〉α ≡ |I = 0〉α, spin singlet) and an antisymmetric (|t〉α ≡ |I = 1〉α, spin triplet) linear combination of
two-particle states |DD′〉α = |D〉α ⊗ |D′〉α,

|I〉α = NαI(|12〉α + (−1)I |21〉α), (179)

where NαI = 1/
√

2(1 + (−1)I |Sα|2) and Sα = α〈1|2〉α denotes the overlap between the two orbital wave functions
|1〉α and |2〉α. From the electron and hole singlet and triplet, the four biexciton states |IJ〉 = |I〉e ⊗ |J〉h can be
formed, where I = 0 (1) for the electron singlet (triplet) and J = 0 (1) for the hole singlet (triplet). The biexciton
energies

EIJ = 〈IJ |H |IJ〉 = E0 + EZ + EW
IJ + EC

IJ , (180)

with EA
IJ ≡ 〈IJ |HA|IJ〉, can be calculated analytically within HL (Gywat et al., 2002).
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FIG. 33 (a) and (b): Oscillator strengths fXX,X for transitions between the biexciton states |XX〉 = |IJ〉 and a single
remaining exciton on one QD in units of f0 as a function of (a) the magnetic field B (in Tesla) at E = 0 and (b) the electric
field E (in mV/µm) at B = 0. The plotted HL energies EIJ are Ess (solid line), Est (short-dashed), Ets (dot-dashed), and Ett

(dotted), neglecting the Zeeman energy. The parameters were chosen for GaAs with η = ωe/ωh = 1/2. (c) Entanglement of
formation E as a function of the emission angles θ1 and θ2 of the two photons. Only if both photons are emitted perpendicular
to the plane (θ1 = θ2 = 0), the entanglement is maximal (E = 1). If at least one of them is emitted in-plane (θi = π/2), then
the two photons are not entangled (E = 0).

The exciton and biexciton recombination rates are determined by the oscillator strength f which is a measure for
the coupling between the dipole moment of the exciton states and the electromagnetic field. For a transition between
the N + 1 and N exciton states |N + 1〉 and |N〉, the oscillator strength is defined as

fN+1,N =
2|pNkλ|2

m0~ωN+1,N
, (181)

where m0 is the bare electron mass, ~ωN+1,N = EN+1 − EN , and pNkλ = 〈N + 1|ekλ · p|N〉, where ekλ is the
unit polarization vector for a photon with momentum k and helicity λ = ±1, and p is the electron momentum
operator. The inter-band momentum matrix element for a cubic crystal symmetry is given by Mσλ(θ) = ekλ ·pcv(σ) =
pcv(cos(θ)−σλ)/2 ≡ pcvmσλ(θ), where θ is the angle between k and the normal to the plane of the 2D electron system
(assuming that the latter coincides with one of the main axes of the cubic crystal), and Ep = 2p2

cv/m0 (= 25.7 eV for
GaAs).

The orbital momentum matrix element for the recombination of an exciton to the vacuum and for transitions from
a biexciton state |XX〉 to a single exciton state |X〉 are given in (Gywat et al., 2002); we give here our result for a
transition between the HL biexciton states |XX〉 = |IJ〉 with one exciton on each QD and a single exciton in the
final state |X〉,

|〈IJ |ekλ · p|X〉| = 2Mσλ(θ)
√

NIJ

(
Ceh

[
(−1)I+J+SeSh

]
+ Seh

[
(−1)JSe+(−1)ISh

])
. (182)

The corresponding oscillator strength f is plotted in Figs. 33a and 33b, in the approximation ~ωXX,X ≈ Eg. The
effect of an electric field is to spatially separate the electrons from the holes, which leads to a reduction of the oscillator
strengths. Hence, the optical transition rate can be efficiently switched off and on, thus allowing the deterministic
emission of one photon pair.

The HL biexciton state |IJ〉 can be written as a superposition of dark (Sz = ±2) and bright (Sz = ±1) exciton
states. Upon recombination of the biexciton, the emitted photon states are (up to normalization)

|χIJ 〉 ∝ |+1, θ1〉|−1, θ2〉 + (−1)I+J |−1, θ1〉|+1, θ2〉, (183)

where |σ, θ〉 = N(θ)(mσ,+1(θ)|σ+〉 + mσ,−1(θ)|σ−〉) is the state of a photon emitted from the recombination of an
electron with spin Sz = σ/2 = ±1/2 and a heavy hole with spin Sz = 3σ/2 in a direction which encloses the angle
θ with the normal to the plane of the 2D electron and hole motion. The states of right and left circular polarization
are denoted |σ±〉. The entanglement between the two photon polarizations in the state Eq. (183) can be quantified
by the von Neumann entropy E. For |ss〉 or |tt〉 and emission of the two photons enclosing an azimuthal angle φ = 0
or π, we obtain

E = log2(1 + x1x2) −
x1x2 log2(x1x2)

1 + x1x2
, (184)

where xi = cos2(θi). We plot E(θ1, θ2) in Fig. 33c. Only the emission of both photons perpendicular to the plane
(θ1 = θ2 = 0) results in maximal entanglement (E = 1). The two photons are not entangled (E = 0) if at least one
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of them is emitted in-plane (θi = π/2). In order to observe the proposed effect, the relaxation rate to the biexciton
ground state needs to be larger the biexciton recombination rate. The existence of such a regime is suggested by
experiments with low excitation densities, see e.g. (Dekel et al., 2000; Ohnesorge et al., 1996). An upper limit for the
pair production rate is then given by (τX + τXX)−1, where τX is the exciton and τXX the biexciton lifetime.
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Kitaev, A. Y., 2003, Annals Phys. 303, 2, quant-ph/9707021.
Koch, R., J. Kirtley, J. Rozen, J. Sun, G. Keefe, F. Milliken, C. Tsuei, and D. DiVincenzo, 2003, Bull. Am. Phys. Soc. 48, 367.
Koch, R., J. Kirtley, J. Rozen, J. Sun, G. Keefe, F. Milliken, C. Tsuei, and D. DiVincenzo, 2004, unpublished.
König, J., H. Schoeller, and G. Schön, 1997, Phys. Rev. Lett. 78, 4482.
Kouwenhoven, L. P., D. G. Austing, and S. Tarucha, 2001, Rep. Prog. Phys. 64, 701.
Kouwenhoven, L. P., C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, 1997a (Kluwer,

Dordrecht), volume 345 of NATO ASI Series E: Applied Sciences, pp. 105–214.
Kouwenhoven, L. P., T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, and S. Taurcha, 1997b, Science 278,

1788.
Kouwenhoven, L. P., G. Schön, and L. L. Sohn (eds.), 1997c, Mesoscopic Electron Transport, volume 345 of NATO ASI Series

E (Kluwer Academic Publishers, Dordrecht).
Kwiat, P. G., K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, 1995, Phys. Rev. Lett. 75, 4337.
Kwiat, P. G., E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, 1999, Phys. Rev. A 60, R773.
Kyriakidis, J., and S. J. Penney, 2004, Coherent rotations of a single spin-based qubit in a single quantum dot at fixed zeeman

energy, cond-mat/0407139.
Kyriakidis, J., M. Pioro-Ladriere, M. Ciorga, A. S. Sachrajda, and P. Hawrylak, 2002, Phys. Rev. B 66, 035320.
Ladd, T. D., J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, and K. M. Itoh, 2002, Phys. Rev. Lett. 89, 017901.
Landauer, R., 1989, Physica D 38, 226.
Landauer, R., 1991, Physics Today 44(5), 23.
Landauer, R., 1996, Science 272, 1914.
Leggett, A. J., S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, 1987, Rev. Mod. Phys. 59, 1.
Lesovik, G., T. Martin, and G. Blatter, 2001, Eur. Phys. J. B 24, 287.
Lesovik, G. B., 1989, Pis’ma Zh. Eksp. Teor. Fiz. 49, 513.
Leung, D. W., 2004, Int. J. Quant. Inf. 2, 33.
Levy, J., 2001, Phys. Rev. A 64, 052306.
Levy, J., 2002, Phys. Rev. Lett. 89, 147902.
Lidar, D. A., D. Bacon, and K. B. Whaley, 1999, Phys. Rev. Lett. 82, 4556.
Lidar, D. A., I. L. Chuang, and K. B. Whaley, 1998, Phys. Rev. Lett. 81, 2594.
Liu, R. C., B. Odom, Y. Yamamoto, and S. Tarucha, 1998, Nature 391, 263.
Livermore, C., C. H. Crouch, R. M. Westervelt, K. L. Campman, and A. C. Gossard, 1996, Science 274, 1332.
Loss, D., and D. P. DiVincenzo, 1998, Phys. Rev. A 57(1), 120.
Loss, D., and P. Goldbart, 1992, Phys. Rev. B 45, 13544.
Loss, D., and E. V. Sukhorukov, 2000, Phys. Rev. Lett. 84, 1035.
Loudon, R., 1998, Phys. Rev. A 58, 4904.
Luyken, R. J., A. Lorke, M. Haslinger, B. T. Miller, M. Fricke, J. P. Kotthaus, G. Medeiros-Ribiero, and P. M. Petroff, 1998,

Physica E 2, 704.
Madelung, O., 1978, Introduction to Solid-State Theory (Springer, Berlin), p. 110.
Mahan, G. D., 1993, Many Particle Physics (Plenum, New York), 2nd edition.
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